Conditional Formatting Regression Analysis

Fall 2014

Import the weather data from here http://w1.weather.gov/obhistory/KHIO.html

- Use conditional formatting to highlight the Weather column blue when there was any type of Smoke
- Use conditional formatting to highlight the Air temperature column (green) when the Air temp is equal to the Heat Index.
- Add a column Change that displays the word: Warmer, Colder, or Same if the temperature is going up, down, or staying the same from the previous hour.

Conditional Formatting

Conditional Formatting

- How do you highlight the top 10 highest temperatures?
- How do you highlight the temperatures that are below average?
- How do you create the highlighting to the right?

Conditional Formatting

 How do you highlight the humidity like the example on the right?

Regression Analysis

- Regression analysis:
 - usually falls under statistics and mathematical modeling
 - is a form of statistical analysis used in forecasting
 - estimates the relationship between variables
 - Allows predictions
- During regression analysis, we need to fit functions to data.
 - What function best describes this data?

Regression Analysis

- Trendlines are used to graphically display trends in data and to analyze problems of prediction.
- Draw a line that best fits the data.
- Regression analysis allows you to extend a trendline in a chart beyond the actual data to predict values
- Place the line such that the distance from each data point to the line is minimized.

Regression Analysis

- There a many types of regression models, the most common is <u>linear regression</u>
- In linear regression, we try to find a straight line that best fits our data.
 - Plot data using Excel's XY or scatter chart.
 - Add the trendline to the chart

Regression Analysis using Excel

Problem 7.1

Create the following worksheet Select both columns of data Select the Insert tab

Select the ScatterPlot

Results

Add Trendline & Equation

- Dress up the graph using the Layout tab
 - Select Axes Titles to label the x & y-axis
 - Select Analysis to add a trendline, equation, and R^2 value

Change the Y value from 200 to 150. What do you notice?

In the CS130 Pub folder is a file called CandyBars.xls. Copy this file to your Desktop, open it and do the following.

- Create a ScatterPlot of the data Carbohydrates and Sugars. Which goes on the X-Axis? Why?
- Add a trendline to your chart, display the function or equation, and display the R^2 value
- 3. Is the function a good predictor? Why or Why not?
- 4. What is the amount of sugars (in grams) that we can expect from a candy bar with 60 grams of carbohydrates?
- 5. Add an empty column after name. In that column, place an asterisk for foods that have a carbohydrate count of 40 grams or higher and a sugar count of 35 grams or higher.
- 6. Turn on the **AutoFilter** and find out the number of M&M/Mars candy that fits these criteria.

Nonlinear Regression

- Often times, relationships are nonlinear and we need a different type of graph to fit the data.
- Excel provides us with different types of nonlinear functions that we can use to fit data. These functions include:
 - Polynomial
 - Exponential
 - Logarithmic
 - Power

Copy FluSeason2013_2014 from CS130 Public to your desktop

http://www.cdc.gov/flu/weekly/weeklyarchives2013-2014/data/whoAllregt36.htm

 Import the table from the link above. You may get the following script error. You should click No multiple times.

Copy FluSeason2013_2014 from CS130 Public to your desktop

http://www.cdc.gov/flu/weekly/weeklyarchives2013-2014/data/whoAllregt36.htm

 Add a column called totals and sum up the number of various flu infections that have occurred

Week	A(H1)	A(2009 H1N1)	A(H3)	A(unable to sub-type)	A(Subtyping not performed)	В	Total # Tested	% Positive	Totals
40	0	68	13	0	83	27	4772	4.02	191
41	0	57	23	0	116	29	5636	3.99	225
42	0	49	15	0	94	26	5716	3.22	184
43	0	70	17	0	100	14	5650	3.56	201
44	0	87	26	0	136	42	6163	4.72	291

Hide all the columns except for Week and Totals

Copy FluSeason2013_2014 from CS130 Public to your desktop

http://www.cdc.gov/flu/weekly/weeklyarchives2013-2014/data/whoAllregt36.htm

The flu season can be broken into two phase, flu growth and flu decline.

- 1. Fit different types of nonlinear functions to the growth data
- 2. Which works best?
- 3. How do we know?

\square	Α	J	K	L	М	V
1	Flu Gro	wth			Flue D	ecline
2	Week	Totals			Week	Totals
3	40	191			2	4811
4	41	225			3	4454
5	42	184			4	3810
6	43	201			5	2863
7	44	291			6	2358
8	45	393			7	1872
9	46	516			8	1474
10	47	704			9	1178
11	48	871			10	1001
12	49	1813			11	968
13	50	2198			12	1005
14	51	3858			13	1028
15	52	4819			14	1066
16	1	5098			15	1058
17					16	897
18					17	813

Problem 7.3 Continued

- Using the linear trendline:
- 1. If the growth phase did not end, how many infections would we expect in week 2?
- 2. If the growth phase did not end, in what week would we expect 10,000 infections?

Solving Exponential and Logarithmic Equations

- Recall that to solve an equation of the form $y = ae^{bx}$ for x (where a and b are just constants), you first divide by a to obtain $y/a = e^{bx}$. Now, you must take the natural logarithm of each side to obtain $\ln(y/a) = bx$. Dividing by b yields $x = (1/b)\ln(y/a)$.
- Recall that to solve an equation of the form $y = a \ln(bx)$ for x (where a and b are just constants), you again divide by a to obtain $y/a = \ln(bx)$. Now, you must exponentiate each side to obtain $e^{y/a} = bx$. Dividing by b yields $x = (1/b)e^{y/a}$.

http://zeus.cs.pacificu.edu/shereen/cs130f14/WorldPop.html

 Import this data into Excel and run an exponential regression.

World Population Population (Billions)

The equation contains a good deal of rounding.

We know this from **E-16**

In order to use the equation to predict values:

Right Click Equation Format Trendline Label Number Decimal Places: 18

7.4 Continued

- What is the predicted population in 2000?
- When will the population hit 7.0 billion people?
- Check WorldOMeters to see when the world hit 7 billion people. How accurate was the model?

http://www.worldometers.info/world-population/

The following data is from an actual study that considered how memory decreases with time.

- Read a list of 20 words slowly aloud
- later, at different time intervals, how many can you recognize?
- The percentage, P, of words recognized was recorded as a function of the time t elapsed in minutes.

Problem 7.5 Continued

http://zeus.cs.pacificu.edu/shereen/cs130f14/Problem7.5.html

T,min	5	15	30	60	120	240	480	720	2880	5760
P%	73.0	61.7	58.3	55.7	50.3	46.7	38.3	29.0	24.0	18.7

- 1. What is the logarithmic trendline for the given data?
- 2. At what time T can we expect 40% of the words to be remembered? In order to solve this problem, rewrite the logarithmic equation solving for x. Then using Excel, find the answer to the given question.
- 3. Check your answer using Goal Seek. The two answers should be very close.