CS250 Intro to CS 11

Spring 2018



Topics

Virtual Functions

Pure Virtual Functions

Abstract Classes

Concrete Classes

Binding Time, Static Binding, Dynamic Binding
Overriding vs Redefining

Reading: pp. 929-952
Problems: pp. 925-928 15.9-15.15 (all very good)

CS250 - Intro to CS 11



Abstract Class

Consider a base class called Shape that
contains a draw function

Circle, Square, and Line are classes that are
derived from Shape, and each one has a
unique draw function

If some kind of array of Shape pointers is
maintained, a simple draw command can be
sent to each array object invoking the
specific draw method for each object type

We are revisiting this idea



Abstract Class

 An abstract class is a class where the
programmer never intends to instantiate an
object of the abstract class type

» These classes are typically base classes and
are used in an inheritance hierarchy to build
more generic derived classes

« Parts of the abstract class are not
implemented in the base class; therefore,
this logic MUST be implemented in the
derived class




Pure Virtual Functions

» A class Is made abstract by having one or
more pure virtual functions associated with
the class as follows:

o virtual void functionName () = O;

« Each derived class must provide its own
draw function that overrides the draw
function of the abstract class



Abstract Class Example

class Shape
{
public:
Shape (int x = @, int y = 9);
void setX (int);
void setY (int);
int getX () const;
int getY () const;
virtual void draw () =
virtual double area ()
private:
int mX;
int mY;

6

}s

CS250 - Intro to CS 11



Concrete Class

o A concrete class is any class that can be
instantiated

o An object of a concrete class can be created

Of Shape, Circle, Square, and Line, which are
abstract and which are concrete? Why?



Concrete Class Example

class Circle : public Shape
{
public:
Circle (int x = @, int y = 0, double radius = 0);
void setRadius (double);
double getRadius () const;
virtual void draw ();
virtual double area ();
private:
double mRadius;

}s

CS250 - Intro to CS 11



Virtual Functions

o A virtual function

o Allows the derived class the ability to override the
function and

o Must have an implementation

o A pure virtual function

o Requires the derived class to override the
function

o Cannot have an implementation



Binding Time

e Binding time - the time at which something
becomes known

o Static Binding - binding time that happens
during compilation (e.g. a variable’s type)

o Dynamic Binding - binding time that happens
during runtime (e.g. the heap address of
some dynamically allocated piece of memory)



Redefining vs Overriding

o A derived class can “redefine” a base
class member (static binding)

o A derived class that redefines a virtual
function of a base class is said to
“override” the base class function
(dynamic binding)



The Problem

 Turn InBetween Composition into InBetween
Polymorphism

 Three Players:

— Human
— RandomAlIl
— ConservativeAl

CS250 - Intro to CS 11

12



Human

 This player uses the normal keyboard interaction
as in InBetweenComposition

CS250 - Intro to CS 11

13



RandomAIPlayer

« This player uses the two cards face up to
determine a bet amount as follows:
— rand () % (highCardValue - lowCardValue + 1) + 1

« This player cashes out if a random number mod
11 isequalto O



ConservativeAlIPlayer

« This player uses the two cards face up to
determine a bet amount as follows:

— if the highCardValue - lowCardValue is less than 6, the
player bets 1 chip; otherwise, the player bets 2 chips

« This player cashes out if their bank loses or gains
10% of its original value



Deck

-macDeckOfCards[MAX_CARDS _IN_DECK]: Card

-mTopCardindex : int
-MAX CARDS_IN_DECK : int

+Deck()

+shuffle() : void
+deal() : Card
+cardsLeft() const: int
+print{) const : void

Card

-mCardld

-NUM_SUITS - int
-CARDS_IN_SUIT : int

-MIN_CARD _ID : int

-MAX_CARD 1D :int
-aSuitiNUM_SUITS] : char
-aDenomination[CARDS _IN_SUIT] : string

Main

Players : Player * []
Game : InBetween

InBetween

-mcBank : Bank
-mcDeck : Deck
+orderlncreasin,

Card &. Card &) : void

+InBetween(int, int)
+getBankBalance() const : int

+Card(int)

+isEqual(const Card &) caonst : bool
+isLessThan(const Card &) const : bool
+isGreaterThan(const Card &) const : bool
+getSuit() const : char
+getDenomination() const : string

+getDenominationValue() const : int
" I

+buyln(Player &) : void
+payWinner (Player &, int);
+collectLoser{Player &, int) : void
+cashOut(Player &) : void

+getinBetweenCard () : Card

+isWinner{const Card &, const Card &, const Card &) : bool

+getOuterCards (Card &, Card &) : void

Bank

-mBalance : int
-DEFAULT_BAMK : int

+Bank(int)

+deposit{int) : void
+withdrawal(int) : void
+getBalance() const : int

Player

-mName : string
-mcBank : Bank

+Player(string, int)

+win(int) : void

+lose(int) : void

+isInvalidBet(int) const : bool
+getBankBalance() const : int

+getName() const : string

+isBusted() const : bool

+getBet(const Card & const Card &) :int =0
+cashOut() const : char=0

RandomAlPlayer

ConservativeAlPlayer

HumanPlayer

+RandomAlPlayerAlPlayer (string, int)
+gefBet(const Card &, const Card &) : int
+cashOut() const : char=0

+ConservativeAlPlayer (string, int)

+getBet(const Card & const Card &) : int

+cashOut() const : char=0

+HumanPlayer (string, int)

+cashOut() const : char =0

+getBel{const Card &, const Card &) : int




