
Chapter 15
More Inheritance

 Reading: pp. 929-945

 Good Problems to Work: pp. 917-918: 15.7, 15.8

 More Inheritance

 Polymorphism

 Virtual Functions

CS250 - Intro to CS II 1Spring 2017



Destructors

 The opposite of constructors

 Have the same name as the class, with a ~ in front 
of it

 Called whenever an object is destroyed

 A destructor has no arguments and or return value

 Only one destructor allowed!

 No need for us to explicitly declare a destructor 
unless there are pointer variables in the class

CS250 - Intro to CS II 2Spring 2017



Constructor/Destructor Example

class Test
{
public:

Test (int i);
~Test ();

private:
int mId;

};

Test::Test (int i)
{
mId = i;
std::cout << “C: " << mId << std::endl;

}

Test::~Test ()
{
std::cout << “D: " << mId << std::endl;

}

CS250 - Intro to CS II 3Spring 2017



What is the output?

void funct ();

int main ()

{

Test cTest1 (1);

funct ();

Test cTest3 (3);

return EXIT_SUCCESS;

}

void funct ()

{

Test cTest2 (2);

}

CS250 - Intro to CS II 4Spring 2017



Polymorphism

 Code is said to be polymorphic if 

executing the code with different types of 

data (objects) produces different behavior

 Program in the general, rather than 

program in the specific

 Virtual functions make polymorphism 

possible

CS250 - Intro to CS II 5Spring 2017



Consider

#include <iostream>

class Def1 

{

public:

Def1 () {std::cout << "Def1\n";}

~Def1 () {std::cout << "~Def1\n";}

void Foo () {std::cout << "Def1->Foo\n";}

};

class Def2 : public Def1

{

public:

Def2 () {std::cout << "Def2\n";}

~Def2 () {std::cout << "~Def2\n";}

void Foo () {std::cout << "Def2->Foo\n";}

};

CS250 - Intro to CS II 6Spring 2017



What is the output? Why?

int main ()

{

Def1 *pcDef1 = new Def1;

Def2 *pcDef2 = new Def2;

pcDef1->Foo ();

pcDef2->Foo ();

delete pcDef1;

delete pcDef2;

}

CS250 - Intro to CS II 7Spring 2017



What is the output? Why?

int main ()

{

Def1 *pcDef1 = new Def1;

Def1 *pcDef2 = new Def2; // type Def2 to Def1

pcDef1->Foo();

pcDef2->Foo();

delete pcDef1;

delete pcDef2;

}

CS250 - Intro to CS II 8Spring 2017



Virtual Functions

 You can tell the compiler to select the 

more specialized version of a member 

function by declaring the member function 

to be a virtual function

 Declare a virtual function by prefixing its 

declaration with the word virtual

CS250 - Intro to CS II 9Spring 2017



What is the output? Why?

If the following 2 changes are made to the previous program, 
what is the output? Why?

virtual void Foo () {std::cout << "Def1->Foo" << std::endl;}

virtual void Foo () {std::cout << "Def2->Foo" << std::endl;}

int main ()
{

Def1 *pcDef1 = new Def1;
Def1 *pcDef2 = new Def2;
pcDef1->Foo();
pcDef2->Foo();
delete pcDef1;
delete pcDef2;

}

CS250 - Intro to CS II 10Spring 2017



Virtual Destructor

 Any potential base class should have a virtual 

destructor

 Why? The compiler performs static binding on 

any destructor not declared virtual

If the following changes are made to the original 

program, what is the output? Why?

CS250 - Intro to CS II 11Spring 2017



Virtual Destructor

virtual ~Def1 () {std::cout << "~Def1" << std::endl;}

virtual void Foo () {std::cout << "Def1->Foo" << std::endl;}

virtual void Foo () {std::cout << "Def2->Foo" << std::endl;}

int main ()
{
Def1 *pcDef1 = new Def1;
Def1 *pcDef2 = new Def2;
pcDef1->Foo();
pcDef2->Foo();
delete pcDef1;
delete pcDef2;

}

CS250 - Intro to CS II 12Spring 2017


