
CS250 Final Review Questions

The following is a list of review questions that you can use to study for the final. I

would first make sure you review all previous exams and make sure you fully

understand everything on each of those exams. Then review your lecture notes for

the course, and finally work through as many of these topics as you feel is

necessary. This is not a comprehensive list of terms and examples, just what I had

time to put together for you to use as a study guide.

Important Terminology

 struct & class and the differences between the two

 class & object and the differences between the two

 public vs private vs protected

 pointers to static data and dynamic data

 array notation vs pointer notation especially pointers to string data

 object-oriented programming

 operator overloading

 friend

 implicit operand & explicit operand

 runtime stack, heap, activation record and how they are used

 constructor, destructor

 this, *this, this->

 static variables

 inheritance

 polymorphism

 abstract class

 derived class

 concrete class

 superclass and subclass

 virtual function vs a pure virtual function (how are they different? when

would you use one over the other?)

 overloading vs overriding vs redefining

Arrays

a) Initializing int values[] = {5, 4, 3, 2, 1};

 int i = 2;

b) Accessing cout << values[i]++;

 cout << values[i++];

 cout << values[++i];

c) As arguments void swap (int &i, int &j)

 {

 int t = i;

 i = j;

 j = t;

 }

 swap (values[2], values[3]);

 swap (values[4], values[4]);

d) Array manipulation - finding largest value, smallest value, exchanging
elements, inserting a value into an array in an arbitrary location. Array

manipulation can be code segments or as functions and may require pointer
notation.

e) Parallel arrays - copying one array to another, are two arrays the same,

append one array on the end of another, storing related information into
parallel arrays, searching and returning data in parallel arrays

f) Two-dimensional arrays – initializing, accessing, traversing a 2D array by

rows or by columns, passing 2D arrays (or array elements) to functions,

average values in a row or a column or down the diagonal

Structures

a) Declare struct Point

 {

 double x, y;

 };

b) Define Point sPt;

c) Access sPt.x = 2;

d) As argument void printPoint (const Point &rsPt)

 {

 cout << rsPt.x << " " << rsPt.y;

 }

e) Structure Variables - comparing, displaying, initializing

f) No unions

g) Arrays of structs - loading an array of structs from a file, searching,
inserting into, deleting from

Classes

a) Declare class Point

 {

 private:

 double x, y;

 public:

 Point (double x, y); // constructor

 Point (); // default constructor

 void setX (double); // mutator

 void setY (double); // mutator

 void printPt () const; // accessor

 };

b) Define Point cPt, *pcPt = new Point;

c) Access cPt.setX (4.5);

d) Defining Member function
 void Point::setX (double xCoord)

 {

 x = xCoord;

 }

e) Class Variable - comparing, displaying, initializing, using a constructor
with no arguments, using a constructor with arguments

f) What is object-oriented programming?

Inheritance

Show the output of the following program:

class Base

{

 public:

 Base (){cout << ”Base” << endl;}

 Base (int i){std::cout << ”Base” << i << std::endl;}

 ~Base(){std::cout << ”Destruct Base” << std::endl;}

};

class Der: public Base

{

 public:

 Der (){std::cout << ”Der” << std::endl;}

 Der (int i): Base(i) {std::cout << ”Der” << i << std::endl;}

 ~Der (){std::cout << ”Destruct Der” << std::endl;}

};

int main()

{

 Base a;

 Der d(2);

 return 0;

}

Polymorphism

Using the three classes defined next, answer parts a – c.

class Automobile

{

 public:

 Automobile();

 virtual string getName() const = 0;

 virtual string getType() const;

 string getColor() const;

...

};

class Car : public Automobile

{

 public:

 Car();

 virtual string getName() const;

 virtual string getType() const;

 virtual string getColor() const;

 virtual void driveMe();

...

};

class Sedan : public Car

{

 public:

 virtual string getType() const;

 virtual void driveMe();

...

};

a. What is the problem with the following statement?
Automobile anAuto;

b. Are there any problems with the code snippet below? Why or why not?
void drive (Car someCar)

{

 someCar.driveMe();

}

int main()

{

 Sedan sedan;

 drive (sedan);

 return 0;

}

c. For the statements listed below (1-4), indicate the class from which the function
will be called (i.e. Sedan, Car, or Automobile)

Sedan sedan;

Car car;

Automobile *p1 = &sedan;

Automobile *p2 = &car;

cout << sedan.getColor() << endl; // (1)

cout << p1->getType() << endl; // (2)

cout << p2->getColor() << endl; // (3)

cout << car.getColor() << endl; // (4)

Operator overloading

 Declare a class named Triple with three private data members (floats) x, y, and

z. Provide public functions for setting and getting values of all the private data

members. Define a constructor that initializes the values to user-specified values
or, by default, sets the values all equal to 0. Also overload the following

operators:
 Addition so that corresponding elements are added together
 Output so that it displays the Triple in the form “The triple is (x, y, z).”

 Post-increment so that x and z are increased by one each.

Static variables

 Write a class that contains two class data members numBorn and numLiving.
The value of numBorn should be equal to the number of objects of the class that
have been instanced. The value of numLiving should be equal to the total

number of objects in existance currently (ie, the objects that have been
constructed but not yet destructed.)

 Explain why a static member function of a class shouldn’t try to access a this
variable.

Destructor

 What is a destructor and when is a destructor called?

 Why would you want to have a destructor?
 When is a virtual destructor necessary?

Pointers & dynamic memory allocation

 Consider the following C++ program:

class Base

{

 public:

 void show ()

 {

 std::cout << "Base class";

 }

};

class Derived:public Base

{

 public:

 void show ()

 {

 std::cout << "Derived Class";

 }

}

int main ()

{

 Base* b;

 Derived d;

 b = &d;

 b->show ();

}

 Does the above example contain any static binding? If so, what?
 Does the above example contain any dynamic binding? If so, what?
 Is show overloaded, overridden, or redefined? Explain.

 Make sure you know how to make show overloaded, overridden, and
redefined?

What is a memory leak? Create a memory leak.

