
CS250 Assignment 4 

In-Between: the card game 

Date assigned: Wednesday, March 7, 2018 

Date due: Friday, March 16, 2018 

Points:  35 

In-Between (AKA Acey Duecy) is a card game, typically played with multiple players, where two cards are 

displayed face up and players bet on whether the next card to be displayed falls in between the two cards. 

(http://en.wikipedia.org/wiki/Acey_Deucey_%28card_game%29). 

You are to implement a single player version of this game. Two cards will be displayed, and the user will place a 

bet on whether the next card will fall in between the two cards. If the third card does fall between the first two 

cards, then the user will win their bet ; otherwise, they lose their bet  User input for the following example is 

susan, 100, 1, y, 5 and n. 

Example: 

   

   

 

Notes on gameplay: 

 The game begins with the player entering their name and buying into the game. The player must buy into 

the game with a value greater than 0. Continue asking for input until the player meets this requirement. 

http://en.wikipedia.org/wiki/Acey_Deucey_%28card_game%29


 Next, two cards are dealt and displayed as shown in the second screenshot. When displaying the cards, 

always display the lowest card first and the highest card second. The card values from lowest to highest are 

2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A. 

 After both cards are displayed, the player places a bet. The minimum bet amount is $1 and the maximum is 

the floor of half of the balance unless the player has less than $10 in which case the player can bet 

everything. All bets are to be whole numbers and will be entered as such. Continue asking for input until the 

player meets this requirement. 

 Once the bank balance for the player reaches zero, the game is to automatically terminate displaying the 

player’s balance as $0 and the InBetween Bank balance updated appropriately using the above format at the 

end of the game. 

 I will not test more than a deck’s worth of cards, so there will no need to test for and reshuffle the deck. 

 Let's assume that a player starts with a balance of $100. 

 If the player bets $10 and wins, the resulting chip count will be $110 as the player wins their bet. 

 If the player bets $10 and loses, the resulting chip count will be $90. 

 Play continues until the player decides not to play again (cashes out) or goes broke. The player must enter a 

y or an n to cash out unless they go bust. Continue asking for input until the player meets this requirement. 

 Assume the player will not bust the bank. 

 All I/O is to exist in main only. You are going to find this extremely hard to do correctly. 

Notes on design: 

By Friday, you are to email me with the names of the classes you think you will use to implement this 

assignment. Make sure the names are descriptive. We clearly know there will be a Deck. For each class, you will 

need a .h and a .cpp. You will also need a driver that plays the game. For this assignment, place Deck.h and 

Deck.cpp in the project 03_Card that you created for the last assignment. All other files are to go into a new 

project called 04_InBetween. 

Remember, cards are numbered from 0 through 51 (MAX_CARDS_IN_DECK – 1)  inclusive for a total of 52 cards; 

therefore, initialize your deck of cards with the cardIds from 0 through 51 inclusive AND in that exact order. You 

must use the following shuffling algorithm assuming the random number generator is seeded with a seed value 

of 2 in the constructor of Deck: 

1) Set a variable cardIndex equal to the position of the last card in the deck which is 51. 

2) Generate a random number in the range of 0 to (cardIndex – 1) inclusive. For the first iteration of the loop, 

the random number will be between 0 and 50 inclusive, second iteration 0 through 49 inclusive, .... Place this 

random number in a variable called randomIndex. 

3) Exchange the card at position cardIndex with the card at position randomIndex 

4) Decrement cardIndex by 1 

5) if cardIndex is not equal to 0, go to 2) 

My shuffled card deck looks like the following. Your shuffled deck must match exactly to make sure we are using 

the same shuffling algorithm and seed when I go to grade. 

 



 

 

Goals for this assignment 

1. Write an object-oriented program using at least multiple classes. 

2. Avoid using getters and setters when possible. 

3. Understand the use of composition in OOP. 

4. Practice modular programming by using well-defined functions. 

5. Write 1 function prototype, implement that 1 function prototype, and test that 1 function BEFORE 

writing another prototype!!!! 

 

To complete this assignment you must submit the following:  

An electronic copy of your program on Grace  

a) Add the above files as described to your existing solution PUNetID-Assignments. It is vital 

that you name your project correctly!  

b) Type your program (fully documented/commented) into the project. You need to follow the 

coding standards from the CS250 Web page. These coding standards have been modified to 

include additional C++ language features introduced in CS250, so please be sure to read 

the new coding standards.  

c) Pay attention to the example output. Your program’s output must look exactly like the 

sample output. The spacing and newlines in your output must match exactly.  

d) Make sure that your program builds without errors & warnings and runs correctly. If you get 

any errors or warnings, double check that you typed everything correctly. Be aware that 

C++ is case-sensitive. You will lose 10% if there are any warnings and 40% if your program 

does not build successfully.  

e) Once you are sure that the program works, it is time to submit your program. You do this 

by logging on to Grace and placing your complete solution folder in the correct drop folder 

based on the section of the course in which you are enrolled (CS250-XX Drop).  

f) The solution must be in the drop folder by the time class starts on the day the assignment is 

due. Anything submitted after that will be considered late. 

g) If you drop multiple solutions, you will lose 10% of the assignment points, so do not drop 

until you are entirely sure that you are completely done working on the assignment. 

A hard copy of your program   

a) The hard copy must be placed on the instructor’s desk by the time class starts on the day 

that it is due.  

b) The hard copy must be printed in color, double-sided, and stapled in the upper left corner if 

your solution contains multiple pages.  Print the file with main first and then each .h/.cpp 

file pair. If a class uses composition, print the file without composition first, e.g. print 

Card.h/.cpp before Deck.h/.cpp. 

c) Your tab size must be set to 2 and you must not go past column 80 in your output.  

Remember, if you have any problems, come to me straight away with your project on a 

flash drive or on Grace. Good Luck!!!!  

 

THIS ASSIGNMENT IS HARD!!!! DO NOT PUT OFF THE DESIGN, IMPLEMENTATION, OR 

TESTING UNTIL THE LAST MINUTE. 


