
1

CS 380

ALGORITHM DESIGN

AND ANALYSIS
Lecture 15: LCS, edit distance review

Sequence Alignment

References:
Algorithm Design, Pearson, 2006 Kleinberg, Tardos

http://en.wikipedia.org/wiki/Needleman-3Wunsch_algorithm

LCS Review: Lecture 13

CS380 Algorithm Design and Analysis

If characters match, add 1 to value in diagonal, point to that entry.

If characters DON’T match, look to cell above and to left and enter that value

in current cell. Point to larger cell entry, default to up if equal.

2

LCS Example: Lecture 13

CS380 Algorithm Design and Analysis

http://lcs-demo.sourceforge.net/

Edit Distance Review: Lecture 14

CS380 Algorithm Design and Analysis

• Initialize matrix d:

• d(i,0) = i, d(0,j) = j // i = row, j = column

Compute values in a similar row-centric way using

a nested-loop the values:

Arrows point to the cell used to compute the

current cell’s value (no default on ties, not unique!)

U/D

L/R

DIAG

DIAG

3

Example: Edit Distance, Lecture 14

CS380 Algorithm Design and Analysis

https://phiresky.github.io/levenshtein-demo/

Example 1: Edit Distance, Lecture 14

CS380 Algorithm Design and Analysis

How can this information be used for alignment?

4

Example 2: Edit Distance

CS380 Algorithm Design and Analysis

How can this information be used for alignment?

How can this information be used to transform?

https://phiresky.github.io/levenshtein-demo/

Edit Distance: Review

• Edit Distance:

• Gave the minimum number of changes to convert one

string into another

• Can be used to illustrate how to transform one

sequence into another

• Can also be used for basic sequence alignment, but

doesn’t allow for a full cost analysis and comparison

CS380 Algorithm Design and Analysis

5

Sequence Alignment: General

• Needleman-Wunsch

• Maximizes similarity by giving weights to the

types of differences (gaps and mismatches)

• Generalized form of Levenshtein

• additional parameters: (discipline or app. specific)

• gap penalty, δ

• mismatch cost α
x,y

= cost of mismatched x, y

match reward: α
x,x

= 0 (our assumption)

CS380 Algorithm Design and Analysis

Sequence Alignment: Example

• Align mean and man:

Option 1: Option 2: Option 3:

mean mean mean

man- -man m-an

2 mismatches 1 mismatch 0 mismatch

1 gap 1 gap 1 gap

Option 3 best in this case

Options 1 and 2: What if e→a mismatch (opt 1) is more

expensive than e→m mismatch (opt 2)?

CS380 Algorithm Design and Analysis

6

Sequence Alignment: Definition

• SX={1,2,...,m}: positions of characters in string X

• SY={1,2,...,n}: positions of characters in string Y

• A alignment M is a set of pairs of positions:

M= { (1, 2), (2, 3), (4, 4) … }

such that:

• each item in SX and SY appear in at most one pair.

• no crossings are allowed:

i.e. if (i,j) and (i’, j’) are both in M and i < i’, then j < j’.

In previous example:

• Option 3: M = {(1,1), (3, 2), (4, 3)}

CS380 Algorithm Design and Analysis

Sequence Alignment: Cost

• The cost of a sequence alignment M is the sum of:

• Costs of all of the mismatches in M

• Costs of all of the gaps in either string:

𝐶𝑜𝑠𝑡 𝑀 = σ𝛼𝑥𝑖,𝑦𝑗 + σ𝛿 + σ𝛿

mismatches in M gaps in x gaps in y

In option 1 of our example, the cost is:

𝐶𝑜𝑠𝑡 𝑀 = 𝛼𝑒,𝑎 + 𝛼𝑎,𝑛 + 𝛿

CS380 Algorithm Design and Analysis

7

Recurrence

• Two strings x
1
...x

m
and y

1
...y

n

• In an optimal alignment M, at least one of the

following is true:

• (i) (m, n) is in M // last characters are matched

• (ii) x
m

is not matched // No pair (m, *) in M

• (iii) y
n

is not matched // No pair (*, n) in M

CS380 Algorithm Design and Analysis

Recurrence: Consequence

Let opt(i , j) be the minimum cost of aligning

Xi= {x1,x2,…xi} and Yj= {y1,y2,…yj}

The cases from previous slide:

• (i) pay mismatch cost 𝛼𝑥𝑖,𝑦𝑗 and align Xi-1 and Yj-1

• (ii) pay gap cost 𝛿 since xi is not matched then

align Xi-1 and Yj

• (iii) pay gap cost 𝛿 since yj is not matched then

align Xi and Yj-1

Take the minimum of these three costs!

CS380 Algorithm Design and Analysis

8

Recurrence**

So, for i and j > 0:

opt(i , j) = min[𝛼𝑥𝑖,𝑦𝑗+ opt(i - 1, j -1), (DIAG)

δ + opt(i - 1, j), // x
i
is not matched (U/D)

δ + opt(i ,j - 1)] // y
j
is not matched (L/R)

 (x
i
,y

j
) is in an optimal alignment M for this

subproblem iff the minimum achieved is achieved

by the first of these three values.

CS380 Algorithm Design and Analysis

Sequence Alignment

Alignment(X,Y) //|X|=m, |Y|=n

Array A[0….m,0…n]

A[i,0]=i*delta // must use all gaps

A[0,j]=j*delta // to align these

for i = 1 to m // row centric

for j = 1 to n

use recurrence ** to compute A[i,j]

Endfor

Endfor

Return A[m,n]

CS380 Algorithm Design and Analysis

9

Example

• Assume that:

• 𝛿 = 2

• 𝛼 𝑣, 𝑣 = 1

• 𝛼 𝑐, 𝑐 = 1

• 𝛼 𝑣, 𝑐 = 3

• What is the cost of aligning the strings?:

• man

• mean

CS380 Algorithm Design and Analysis

Example, Continued

CS380 Algorithm Design and Analysis

m e a n

0 1 2 3 4

0 0 2 4 6 8

m 1 2

a 2 4

n 3 6

𝛿 = 2
𝛼 𝑣, 𝑣 = 1
𝛼 𝑐, 𝑐 = 1
𝛼 𝑣, 𝑐 = 3

10

Recover Alignment

Kleinberg, Tardos, p 284

CS380 Algorithm Design and Analysis

𝛿 = 2
𝛼 𝑣, 𝑣 = 1
𝛼 𝑐, 𝑐 = 1
𝛼 𝑣, 𝑐 = 3

Actual Alignment

How do we recover the actual alignment?

Do we need the entire matrix?

CS380 Algorithm Design and Analysis

11

Time, Space Complexity

• Standard Algorithm:

• Time: O(mn)

• Space: O(mn)

• Upside: Recovering actual alignment relatively easy

• Space-Efficient Algorithm:

• Time: O(mn)

• Space: O(m+n) //For recovering alignment

• Downside: Makes recovering actual alignment more

difficult

Space complexity is important in this context!

CS380 Algorithm Design and Analysis

Sequence Alignment (space efficient)

Hirschberg – 1975

value: need the current and previous column

CS380 Algorithm Design and Analysis

12

Algorithm

Kleinberg, Tardos, p 288

CS380 Algorithm Design and Analysis

Sequence alignment: Linear Space

Kleinberg, Tardos, p 289

CS380 Algorithm Design and Analysis

