CS 380
ALGORITHM DESIGN
AND ANALYSIS

Lecture 15: LCS, edit distance review
Sequence Alignment
References:

Algorithm Design, Pearson, 2006 Kleinberg, Tardos
http://en.wikipedia.org/wiki/Needleman-3Wunsch_algorithm

3 This article may be too technical for most readers to understand. Please help improve this article to
,’\\‘ make it understandable to non-experts, without removing the technical details. The talk page may
contain suggestions. (September 2013) (Learn how and when to remove this template message)

LCS Review: Lecture 13

Let ¢y = length of LCS of xx5...x; and y = y132..;

0 ifi=0o0rj=0,
cli,jl1=4 1+ i-1,j-1] ifx; =yj,
max(c[i-1,j], c[i,j-1]) ifx #y.

“'\19 | ifxi =J/ri,
lijl=y " if x; #; and c[i-1,j] = c[i,j-1],
et if x; # y; and c[i-1,j] < c[i,j-1].

We compute the c[i,j] and b[i,/] in order of increasing i+, or alternatively in
order of increasing i, and for a fixed #, in order of increasing ;.

If characters match, add 1 to value in diagonal, point to that entry.
If characters DON'T match, look to cell above and to left and enter that value
in current cell. Point to larger cell entry, default to up if equal.

LCS Example: Lecture 13

1 2 3 4 5 &6 7 &8 9

-- 0 0 0 0 0 0 1]
taofl 1o '\1|-‘_1 S | I N || |

o =1 t1 T'I‘ =2

rEREE

1
roff 1y 2 -2 r2ff =3) -3 3

] B
rof 1 r2f r2f r2f 13 "\4|-‘—4
rof rf r2f rz2f rzf t3 '\4- 14

toff oyl ot ot r2f otz t4 14| " |

—

=
(=] =1 fi=] Ji=f |J{=1 |Ji=] |=] D.‘C L]

toff r1yf 2 r2 r2f =3 r4) =3

http://lcs-demo.sourceforge.net/

CS380 Algorithm Design and Analysis

Edit Distance Review: Lecture 14

- Initialize matrix d:

- d(i,0) =i, d(0,j)) =j/l'i =row, j = column
Compute values in a similar row-centric way using
a nested-loop the values:

dli — 1,j— 1] if x; =y Match. DIAG
dli —1,j1+1 if X; %y, Delet|.on from X U/D
dli,jl = min dli,j—11+1 if x; # y; Insertion to X L/R

dli—1,j—1]+1 if x; #y; Substitution DIAG

Arrows point to the cell used to compute the
current cell’s value (no default on ties, not unique!)

Example: Edit Distance, Lecture 14

Levenshtein Distance Calculator
How many insertions, deletions, and substitutions does it take to turn ATCGTT into AGTTAC ?

Try elephant and relevant, Saturday and Sunday, Geogle and Facebook.

Calculate Levenshiein distance

The Levenshtein distance is 4:

A G T
0 1 2 3 « ATCGTT: don't change A at position 1
S « ACGTT: delete T at position 2

« AGTT: delete C at position 3
« AGTT: don't change G at position 4
« AGTT: don't change T at position 5
« AGTT: don't change T at position 6
« AGTTA: insert A at position 6

N
N
N
NoW oW RN W B o
w AW ow ow &~ ;P
A B A W B O O O

W N W N

4 40 0 40>
D g s W N
g W N
W N N

https://phiresky.github.io/levenshtein-demo/

Example 1: Edit Distance, Lecture 14

Levenshtein Distance Calculator
How many insertions, deletions, and substitutions does it take to turn ATCGTT into AGTTAC ?

Try elephant and refevant, Saturday and Sunday, Google and Facebook.

Calculate Levenshtein distance

A G T How can this information be used for alignment?
0 1 2 3
1.0 1 2

-
-
-
Row oW NN W ko
[R N I I L
N N I N = s

- 4 @ 0O 4 »
[
B NN

Qe W N
W N W N

CS380 Algorithm Design and Analysis

Example 2: Edit Distance

Levenshtein Distance Calculator
How many insertions, deletions, and substitutions does it take to turn Google into Facebook ?

Try elephant and relevant, Saturday and Sunday, Google and Facebook.

Calculate Levenshtein distance

How can this information be used for alignment?

F a ¢ e b o o Kk

0 1 2 3 4 5 6 7 8

G 1 1 2 3 4 . 6 7 8

o 2 2 2 3 4 5 5 6 7

o 3 3 3 3 4 5 5 5 6
g 4 4 4 4 4 5 6 6 6 Howcan this information be used to transform?

15 5 5 5 5 5 6 7 7

e 6 6 6 6 5 6 6 7 8

https://phiresky.github.io/levenshtein-demo/

CS380 Algorithm Design and Analysis

Edit Distance: Review

- Edit Distance:

- Gave the minimum number of changes to convert one
string into another

- Can be used to illustrate how to transform one
sequence into another

- Can also be used for basic sequence alignment, but
doesn’t allow for a full cost analysis and comparison

CS380 Algorithm Design and Analysis

Sequence Alignment: General

Needleman-Wunsch

Maximizes similarity by giving weights to the
types of differences (gaps and mismatches)

Generalized form of Levenshtein
additional parameters: (discipline or app. specific)
gap penalty, &

mismatch cost a, = cost of mismatched x, y

match reward: a, . = 0 (our assumption)

CS380 Algorithm Design and Analysis

Sequence Alignment: Example

- Align mean and man:

Option 1: Option 2: Option 3:
mean mean mean
man- -man m-an

2 mismatches 1 mismatch 0 mismatch
1 gap 1 gap 1 gap

Option 3 best in this case

Options 1 and 2: What if e—a mismatch (opt 1) is more
expensive than e—m mismatch (opt 2)?

CS380 Algorithm Design and Analysis

Sequence Alignment: Definition

- S,={1,2,...,m}: positions of characters in string X
- Sy={1,2,...,n}: positions of characters in string Y
-Aalighment M is a set of pairs of positions:
M={ (1, 2), (2,3),(4,4) ... }

such that:

- each itemin Sy and S, appear in at most one pair.

- no crossings are allowed:

le.if (i,j) and (7', j’) are bothin M and i <V, thenj<j.

In previous example:
- Option 3: M ={(1,1), (3, 2), (4, 3)}

CS380 Algorithm Design and Analysis

Sequence Alignment: Cost

- The cost of a sequence alignment M is the sum of:
- Costs of all of the mismatches in M
- Costs of all of the gaps in either string:

Cost(M) =) Uxyy; + 6+ Y6
mismatches in M gaps in x gaps iny

In option 1 of our example, the cost is:

Cost(M) =agq +agn+6

CS380 Algorithm Design and Analysis

Recurrence

« Two strings Xx,...x_ and y ...y,
«In an optimal alignment M, at least one of the
following is true:
« (i) (m, n)isin M /Il last characters are matched
- (i) x . is not matched // No pair (m, *) in M
« (i) y is not matched // No pair (*, n) in M

CS380 Algorithm Design and Analysis

Recurrence: Consequence

Let opt(i , j) be the minimum cost of aligning
Xi= {X1,Xp,-..x} and Y= {yy,Yo,...y;}
The cases from previous slide:
- (i) pay mismatch cost Uiy, and align X;; and Y
- (if) pay gap cost § since x; is not matched then
align X, ; and Y,
- (iii) pay gap cost § since y; is not matched then
align Xjand Y,

Take the minimum of these three costs!

CS380 Algorithm Design and Analysis

Recurrence**

«So, foriandj > 0:

eopt(i,) = min[axi'yj+ opt(i- 1, j-1), (DIAG)
O + opt(i - 1, J), // x is not matched (U/D)
O + opt(i ,j - 1)] /1y, is not matched (L/R)

o(xi,yj) is in an optimal alignment M for this
subproblem iff the minimum achieved is achieved
by the first of these three values.

CS380 Algorithm Design and Analysis

Sequence Alignment

Alignment (X, Y) //1X|=m, |Y|=n
Array A[O...m,0..n]
A[i,0]=i*delta // must use all gaps
A[0,jl=j*delta // to align these
for i = 1 tom // row centric

for j =1 ton
use recurrence ** to compute A[i, 7]
Endfor
Endfor

Return A[m,n]

CS380 Algorithm Design and Analysis

Example
- Assume that:
cd=2
ca(v,v)=1
ca(cc) =1
ca(v,c) =3
- What is the cost of aligning the strings?:
* man
* mean

CS380 Algorithm Design and Analysis

Example, Continued
m e a
0 1 2 3 4
0 0 2 4 6
m 1 2
a 2 4
n 3 6
§=2 opt(i , j) = min[a,,, + opt(i - 1, j-1), (DIAG)
Z EZZ)) Z 1 o+ :th(.i - 1,), /x is not matched (UP)
a (o) =3 & + opt(i ,j - 1)] /1y, is not matched (L)

CS380 Algorithm Design and Analysis

Recover Alignment
§=2
nl| 8 6 5 4—>06 a(wv)=1
T Jll a(cc)=1
al 7] 5 .35 |.5 @@e)=3
A A
P O - S I e N
T
2 1—=3 4—=0
m ‘T -
| 0—p2—d—6—8
— n a m e
Figure 6.18 The oprT values
for the problem of aligning
the words mean to name. Kleinberg, Tardos, p 284

CS380 Algorithm Design and Analysis

Actual Alignment

«How do we recover the actual alignment?

Do we need the entire matrix?

CS380 Algorithm Design and Analysis

Time, Space Complexity

- Standard Algorithm:

- Time: O(mn)

- Space: O(mn)

- Upside: Recovering actual alignment relatively easy
- Space-Efficient Algorithm:

- Time: O(mn)

- Space: O(m+n) //[For recovering alignment

- Downside: Makes recovering actual alignment more
difficult

Space complexity is important in this context!

CS380 Algorithm Design and Analysis

SequenCe Alignment (space efficient)

eHirschberg — 1975
evalue: need the current and previous column

Space-Efficient-Alignment (X,Y)
Array Bl0...m,0...1]
Initialize B[i,0]=i§ for each { (just as in column 0 of A)

B[0,1]1=j§ (since this corresponds to entry A[0,j])
For i=1,....m
Bli,1]= min[axﬂ,}_ +B[i—1,0],
§4+Bli—1,1], §+B[i,0]
Endfor
Move column 1 of B to column 0 to make room for next| iteration:
Update Bli, 0]=Bl, 1] for each i
Endfor

Algorithm

Divide-and-Conquer-Alignment (X,Y)

Let m be the number of symbols in X
Let n be the number of symbols in Y
If m=2 or n<2 then

Compute optimal alignment using Alignment(X,Y)
Call Space-Efficient-Alignment(X,Y¥[l:n/2])
Call Backward-Space-Efficient-Alignment(X,Y[n/2+1:n]
Let g be the index minimizing (g, n/2)+g(g,n/2)
Add (g, n/2) to global list P
Divide-and-Conquer-Alignment (X[l :q],¥[1 :n/2])
Divide-and-Conquer-Alignment(X[g+1:n],Y[n/24+1:n])
Return P

Kleinberg, Tardos, p 288

CS380 Algorithm Design and Analysis

Sequence alignment: Linear Space

Second recursive call

X3 -
X2
X Ean
Y1 y2 V3 Yy

First recursive call

Kleinberg, Tardos, p 289

12

