
1

CS 380

ALGORITHM DESIGN

AND ANALYSIS
Lecture 3: Merge Sort and Recurrence Equation Analysis

Text Reference: Chapter 2

Bubble Sort

• Worse case: Comparisons? O(n2)

Swaps: O(n2)

• Best-case: Comparisons? Ω(n)

Swaps? Ω(1)

• Average: Comparisons? ϴ(n2)

Swaps: ϴ(n2)

CS380: Algorithm Design and Analysis

2

Another Sorting Algorithm

• What was the running time of insertion sort?

• Can we do better?

CS380: Algorithm Design and Analysis

Designing Algorithms

• Many ways to design an algorithm:

• Incremental: This is what we did with insertion sort.

Having sorted the subarray, we insert a single element

in its correct position.

• Divide and Conquer: Here the problem is broken up into

subproblems that are similar to the original problem but

smaller in size. The subproblems are solved recursively

then combined to give a solution to the original problem.

Merge sort is an example of a divide and conquer

algorithm.

CS380: Algorithm Design and Analysis

3

Divide and Conquer

• Divide the problem into a number of subproblems

• Conquer the subproblems by solving them recursively

• Combine the subproblem solutions to give a solution to

the original problem

CS380: Algorithm Design and Analysis

Merge Sort

Merge Sort is an example of a divide and conquer

algorithm

MERGE-SORT(A, p, r)

//p & r are indices into the array (p < r)

if p < r //Check for base case

q = (p + r) / 2 //Divide

MERGE-SORT(A, p, q) //Conquer M-S

MERGE-SORT(A, q + 1, r) //Conquer M-S

MERGE(A, p, q, r) //Combine M

CS380: Algorithm Design and Analysis

4

The Merge Procedure

MERGE(A, p, q, r)

• Input: Array A and indices p, q, r such that

• p ≤ q < r

• Subarray A[p..q] is sorted and subarray A[q+1..r] is sorted. Neither

subarray is empty

• Output: The two subarrays are merged into a single

sorted subarray in A[p..r]

CS380: Algorithm Design and Analysis

Merge: Example
MERGE(A, p, q, r)

CS380: Algorithm Design and Analysis

index p=1 2 3 q=4 q+1=5 6 7 r=8

A[index] 1 5 7 9 2 4 6 10

Sorted Sorted

i 1 2 3 4 5

L[i] 1 5 7 9 inf

Construct two new arrays L [q – p + 1 + 1] : and R[r – q + 1]:

j 1 2 3 4 5

R[j] 2 4 6 10 inf

5

Merge: Example, cont.

CS380: Algorithm Design and Analysis

i 1 2 3 4 5

L[i] 1 5 7 9 inf

j 1 2 3 4 5

R[j] 2 4 6 10 inf

k 1 2 3 4 5 6 7 8

A[index] 1

i 1 2 3 4 5

L[i] 1 5 7 9 inf

j 1 2 3 4 5

R[i] 2 4 6 10 inf

Increment i

Merge: Example, cont.

CS380: Algorithm Design and Analysis

i 1 2 3 4 5

L[i] 1 5 7 9 inf

j 1 2 3 4 5

R[j] 2 4 6 10 inf

k 1 2 3 4 5 6 7 8

A[index] 1 2

i 1 2 3 4 5

L[i] 1 5 7 9 inf

j 1 2 3 4 5

R[i] 2 4 6 10 inf

Increment j

6

Merge: Example, cont.

CS380: Algorithm Design and Analysis

i 1 2 3 4 5

L[i] 1 5 7 9 inf

j 1 2 3 4 5

R[j] 2 4 6 10 inf

k 1 2 3 4 5 6 7 8

A[index] 1 2 4

i 1 2 3 4 5

L[i] 1 5 7 9 inf

j 1 2 3 4 5

R[i] 2 4 6 10 inf

Increment j

Merge: Example, cont.

CS380: Algorithm Design and Analysis

i 1 2 3 4 5

L[i] 1 5 7 9 inf

j 1 2 3 4 5

R[j] 2 4 6 10 inf

k 1 2 3 4 5 6 7 8

A[index] 1 2 4 5 6 7 9

i 1 2 3 4 5

L[i] 1 5 7 9 inf

j 1 2 3 4 5

R[i] 2 4 6 10 inf

Increment i

7

Merge: Example, cont.

CS380: Algorithm Design and Analysis

i 1 2 3 4 5

L[i] 1 5 7 9 inf

j 1 2 3 4 5

R[j] 2 4 6 10 inf

k 1 2 3 4 5 6 7 8

A[index] 1 2 4 5 6 7 9 10

i 1 2 3 4 5

L[i] 1 5 7 9 inf

j 1 2 3 4 5

R[i] 2 4 6 10 inf

Increment j

Done

The Merge Algorithm: Cost?

CS380: Algorithm Design and Analysis

MERGE(A,p,q,r)

1 n1 = q - p +1

2 n2 = r - q

3 let L[1..n1+1] and R[1..n2+1] be new arrays

4 for i = 1 to n1

5 L[i] = A[p + i -1]

6 for j = 1 to n2

7 R[j] = A[q + j]

8 L[n1 + 1] = infinity // Not necessary if careful

9 R[n2 + 1] = infinity // Not necessary if careful

10 i = 1

11 j = 1

12 for k = p to r

13 if L[i] <= R[j]

14 A[k] = L[i]

15 i = i + 1

16 else A[k]= R[j]

17 j = j + 1

8

Merge Sort

Merge Sort is an example of a divide and conquer

algorithm

MERGE-SORT(A, p, r)

//p & r are indices into the array (p < r)

if p < r //Check for base case

q = (p + r) / 2 //Divide

MERGE-SORT(A, p, q) //Conquer M-S

MERGE-SORT(A, q + 1, r) //Conquer M-S

MERGE(A, p, q, r) //Combine M

CS380: Algorithm Design and Analysis

Merge Sort: Example

Each function call MERGE-SORT(A, p, r)

results in three function calls:

q = (p + r) / 2 // Get midpoint

MERGE-SORT(A, p, q) == M-S(p,q)

MERGE-SORT(A, q + 1, r)== M-S(q+1,r)

MERGE(A, p, q, r)== M(p,q,r)

Best illustrated with a tree:

CS380: Algorithm Design and Analysis

9

Merge Sort: Calls, A[7], p = 1, r = 7

CS380: Algorithm Design and Analysis

M-S(1,7):

M-S(1,4)... M-S(5,7) M(1,4,7)

M-S(1,2) M-S(3,4) M(1,2,4) M-S(5,6) M-S(7,7) M(5,6,7)

M-S(1,1) M-S(2,2) M(1,1,2) M-S(4,4)M-S(3,3) M(3,3,4) M-S(5,5) M-S(6,6) M(5,5,6)

q = (p + r) / 2

Merge Sort: Calls, A[7], p = 1, r = 7

CS380: Algorithm Design and Analysis

M-S(1,7):

M-S(1,4)... M-S(5,7) M(1,4,7)

M-S(1,2) M-S(3,4) M(1,2,4) M-S(5,6) M-S(7,7) M(5,6,7)

M-S(1,1) M-S(2,2) M(1,1,2) M-S(4,4)M-S(3,3) M(3,3,4) M-S(5,5) M-S(6,6) M(5,5,6)

1

2

3

4 5 6

7
1

8 9 0

2

6

73

4 5

8

9

q = (p + r) / 2

DoneStart

Order: …. ….. 1 09 1 9

Left Right

2

10

Merge Sort: Example, p = 1, r = 7

CS380: Algorithm Design and Analysis

Index (j) 1 2 3 4 5 6 7

Value A[j] 3 1 7 4 8 2 6

Recurrence Relation
• Let T(n) be the time for Merge-Sort to execute on an n

element array.

• The time to execute on a one element array is O(1)

• Then we have the following relationship:

T(n) = 2 T(n/2) + O(n) [the O(n) is for Merge]

T(1) = O(1)

11

Merge Sort
 To solve the recurrence relation we’ll write n instead of O(n)

as it makes the algebra simpler:

T(n) = 2 T(n/2) + n

T(1) = 1

 Solve the recurrence by iteration (substitution)

Merge Sort

T(n) = 2 T(n/2) + n
= 2 [2 T(n/4) + n/2] + n
= 4 T(n/4) + 2n
= 4 [2 T(n/8) + n/4] + 2n
= 8 T(n/8) + 3n
=
….
= General Formula?

Derivation will end when we get to T(1)=1. What does this
imply about n = f(k)?

12

Merge Sort
Continuing, we get:

T(n) = …
= 2k T(n/2k) + k n
= 2log

2

n T(1) + (log2n) n
= n + n log2n [remember that T(1) = 1]
= O(n log n)

Insertion sort

T(n) = T(n-1)+(n-1) ,T(1) = 1

13

Challenges

T(n) = T(n-1) + 2n -1, T(0) = 0

Tower of Hanoi:

T(n)=2T(n-1) + 1, T(0)=1

Next Time

• Alternative analysis of Merge Sort

• Master Method for Solving Recurrences.

CS380: Algorithm Design and Analysis

