CS 380 ALGORITHM DESIGN AND ANALYSIS

Lecture 3: Merge Sort and Recurrence Equation Analysis Text Reference: Chapter 2

CS380: Algorithm Desig	n and Analysis
Bubble	Sort
	6 5 3 1 8 7 2 4
 Worse case 	Comparisons? O(n ²) Swaps: O(n ²)
 Best-case: 	Comparisons? Ω(n) Swaps? Ω(1)
 Average: 	Comparisons? $\Theta(n^2)$ Swaps: $\Theta(n^2)$

Divide and Conquer

CS380: Algorithm Design and Analys

- Divide the problem into a number of subproblems
- <u>Conquer</u> the subproblems by solving them recursively
- <u>Combine</u> the subproblem solutions to give a solution to the original problem

CS380: Algorithm Design and Analysis

Merge Sort

Merge Sort is an example of a divide and conquer algorithm

```
MERGE-SORT(A, p, r)
//p & r are indices into the array (p < r)
if p < r //Check for base case
q = [(p + r) / 2] //Divide
MERGE-SORT(A, p, q) //Conquer M-S
MERGE-SORT(A, q + 1, r) //Conquer M-S
MERGE(A, p, q, r) //Combine M</pre>
```


CS380: Algorithm Design and Analysis											
Merge: Example											
MER	GE	(A,	p), (q,	r)					
index	p=1	2	3		q=4	q+1=5	6		7		r=8
A[index]	1	5	7	,	9	2	4		6		10
			Sorte	d		/	5	Sorted	ł		
Constru	ct two	new a	rrays	L [q – I	p + 1 +	1]:	â	and R	2[r – 0	q + 1]:
i	1 2	2 3	4	5		j	1	2	3	4	5
L[i]	1 5	5 7	9	inf		R[j]	2	4	6	10	inf

CS380: Algorithm Design and Analysis Merge: Example, cont.												
i	1	2	3	4	5		j	1	2	3	4	5
L[i]	1	5	7	9	inf		R[j]	2	4	6	10	inf
k		1	2		3	4	5	6		7		8
A[inde	ex]	1	2		4							
								In	cren	nent j		
i	1	2	3	4	5		j	1	2	3	4	5
L[i]	1	5	7	9	inf		R[i]	2	4	6	10	inf

0	CS380: Algorithm Design and Analysis												
	Merge: Example, cont.												
	i	1	2	3	4	5		j	1	2	3	4	5
	L[i]	1	5	7	9	inf		R[j]	2	4	6	10	inf
	k		1	2		3	4	5	6		7	4	8
	A[inde	ex]	1	2		4	5	6	7		9		10
										Incr	emen	nt j	
	i	1	2	3	4	5		j	1	2	3	4	5
	L[i]	1	5	7	9	inf		R[i]	2	4	6	10	inf
							Done						

CS380:	CS380: Algorithm Design and Analysis								
Th	e Merge Algorithm: Cos	st?							
1	n1 = q - p + 1								
2	n2 = r - q								
3	let $L[1n_1+1]$ and $R[1n_2+1]$ be new arrays								
4	for $i = 1$ to n_1								
5	L[i] = A[p + i - 1]								
6	for $j = 1$ to n_2								
7	R[j] = A[q + j]								
8	$L[n_1 + 1] = infinity // Not necessary if careful$								
9	$R[n_2 + 1] = infinity // Not necessary if careful$								
10	i = 1								
11	j = 1								
12	for $k = p$ to r								
13	if L[i] <= R[j]								
14	A[k] = L[i]								
15	i = i + 1								
16	else A[k]= R[j]								
17	j = j + 1	1							
L		1							

Recurrence Relation • Let T(n) be the time for Merge-Sort to execute on an n element array. • The time to execute on a one element array is O(1) • Then we have the following relationship: T(n) = 2 T(n/2) + O(n) [the O(n) is for Merge] T(1) = O(1)

Merge Sort

• To solve the recurrence relation we'll write n instead of O(n) as it makes the algebra simpler:

$$T(n) = 2 T(n/2) + n$$

T(1) = 1

• Solve the recurrence by iteration (substitution)

Merge Sort

Continuing, we get:

$$T(n) = ...= 2^{k} T(n/2^{k}) + k n= 2^{\log_{2} n} T(1) + (\log_{2} n) n= n + n \log_{2} n [remember that T(1) = 1]= O(n \log n)$$

Challenges T(n) = T(n-1) + 2n - 1, T(0) = 0

Tower of Hanoi: T(n)=2T(n-1) + 1, T(0)=1

