Graphs of Equations in Two Variables

Equation in Two Variables

An equation in two variables, such as y = x² + 1, expresses a relationship between two quantities.

Graph of an Equation in Two Variables

- A point (x, y) satisfies the equation if it makes the equation true when the values for x and y are substituted into the equation.
 - For example, the point (3, 10) satisfies the equation $y = x^2 + 1$ because $10 = 3^2 + 1$.
 - However, the point (1, 3) does not, because
 3 ≠ 1² + 1.

The Graph of an Equation

The graph of an equation in x and y is:

The set of all points (x, y) in the coordinate plane that satisfy the equation.

The Graph of an Equation

- The graph of an equation is a curve, just a general name, it could be a line, a box, but graphs in a 2D plane are called curves, in 3D, they are called surfaces.
- So, to graph an equation, we:
 - 1. Plot as many points as we can.
 - 2. Connect them by a smooth curve.

Sketch the graph of the equation 2x - y = 3

• We first solve the given equation for y to get:

$$y = 2x - 3$$

Use a table, put in the x values and the equation that will be
 y. Then the ordered pair

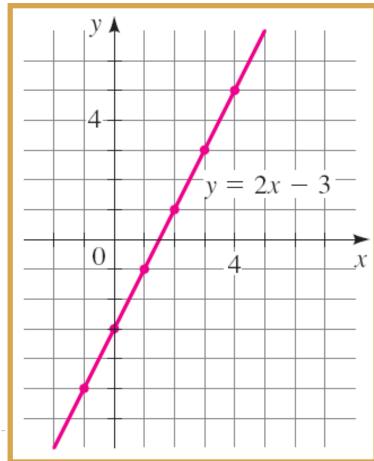
x	y = 2x - 3	(x, y)
-1	-5	(-1, -5)
0	-3	(0, -3)
1	-1	(1, -1)
2	1	(2, 1)
3	3	(3,3)
4	5	(4, 5)

- Of course, there are infinitely many points on the graph—and it is impossible to plot all of them.
 - But, the more points we plot, the better we can imagine what the graph represented by the equation looks like.

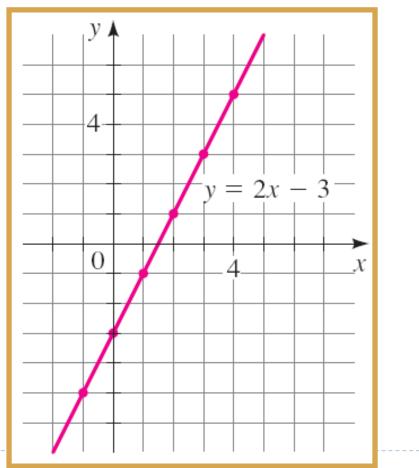
Plot the points that work in the equation

 As they appear to lie on a line, we complete the graph by joining the points by a line.

x	y = 2x - 3	(x, y)
-1	-5	(-1, -5)
0	-3	(0, -3)
1	-1	(1, -1)
2	1	(2, 1)
3	3	(3,3)
4	5	(4,5)



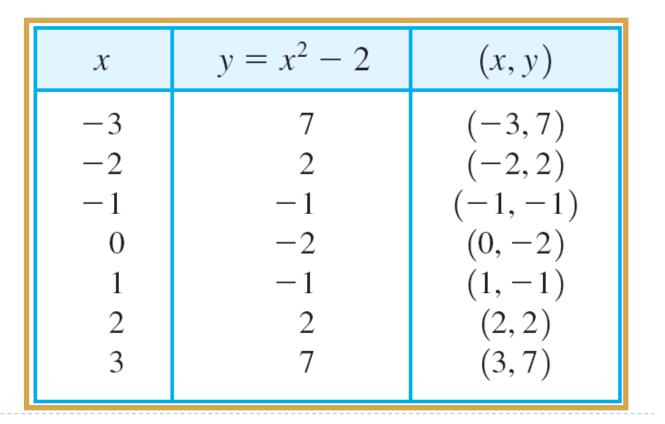
The graph of this equation is indeed a line.



Sketch the graph of the equation

$$y = x^2 - 2$$

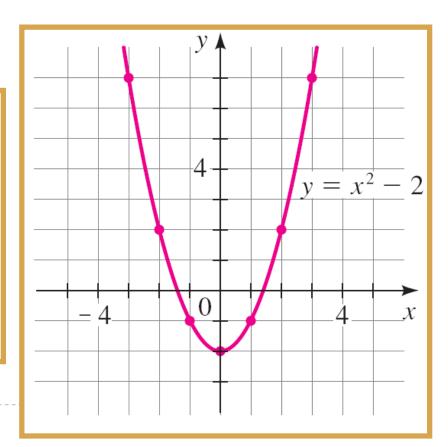
Plug in some x and see what you get for y...In Ch 2.3, you will get your calculator to do this.



Plot the points and then connect them

• A curve with this shape is called a parabola.

x	$y = x^2 - 2$	(x, y)
-3	7	(-3,7)
-2 -1	$2 \\ -1$	(-2,2) (-1,-1)
0	-2	(0, -2)
1 2	$-1 \\ 2$	(1, -1) (2, 2)
3	7	(3,7)



E.g. 3—Graphing an Absolute Value Equation

Sketch the graph of the equation

y = |x| Remember from 1.7

> y=-x > y=x

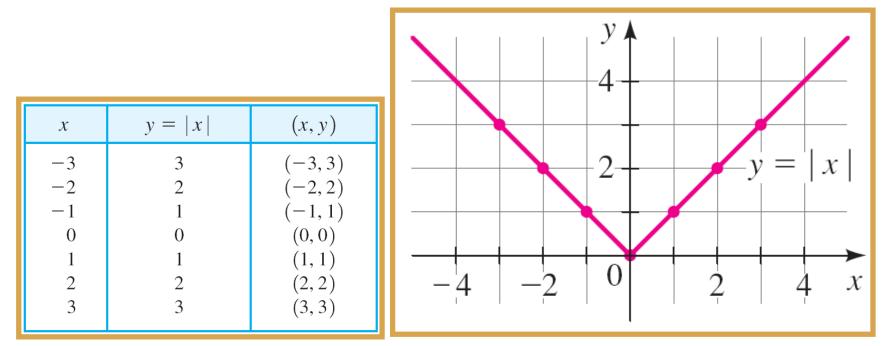
Graphing an Absolute Value Equation

Again, we make a table of values.

x	y = x	(x, y)
$-3 \\ -2$	3 2	(-3,3) (-2,2)
-1	1 0	(-1, 1)
1	1	(0,0) (1,1)
2 3	2 3	(2,2) (3,3)

Graphing an Absolute Value Equation

Tables are great and they make for flawless graphing....

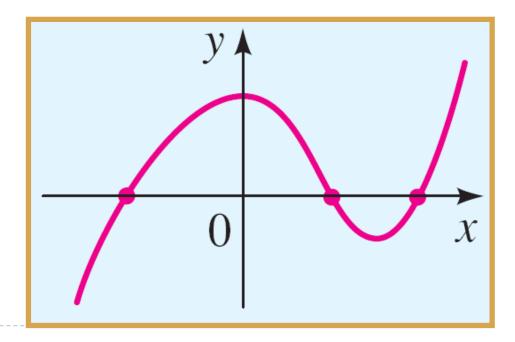


Intercepts

x-intercepts

Are the x-coordinates where a graph intersects the x-axis, they are called the x-intercepts of the graph.

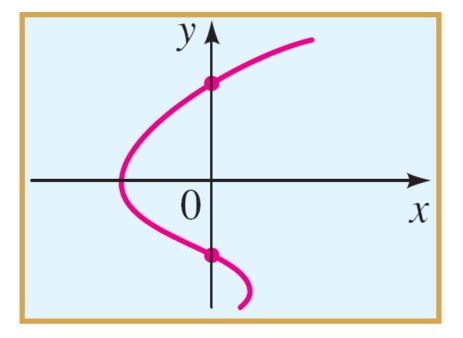
 They are obtained by setting y = 0 in the equation of the graph.



Why? y-intercepts

The y-coordinates of the points where a graph intersects the y-axis are called the y-intercepts of the graph.

 They are obtained by setting x = 0 in the equation of the graph.



Finding Intercepts

Find the x- and y-intercepts of the graph of the equation

 $y = x^2 - 2$

Finding Intercepts

To find the x-intercepts, we set y = 0 and solve for x.

Thus, $0 = x^{2} - 2$ $x^{2} = 2$ (Add 2 to each side) (Take the sq. root) $x = \pm \sqrt{2}$ The x-intercepts are $\sqrt{2}$ and $-\sqrt{2}$ Finding Intercepts

To find the y-intercepts, we set x = 0 and solve for y.

Thus,

 $y = 0^2 - 2$ y = -2

▶ The *y*-intercept is −2.

- So far, we have discussed how to find the graph of an equation in x and y.
- The converse problem is to find an equation of a graph—an equation that represents a given curve in the xy-plane.
- We can do this easily with circles because they have a very standard equation

As an example of this type of problem, let's find the equation of a circle with radius r and center (h, k).

From the distance formula, we have: $\sqrt{(x-h)^2 + (y-k)^2} = r$

$$(x-h)^{2} + (y-k)^{2} = r^{2}$$
 (Square
each side)

> This is the desired equation.

Equation of a Circle—Standard Form

An equation of the circle with center (h, k) and radius r is:

$$(x-h)^2 + (y-k)^2 = r^2$$

This is called the standard form for the equation of the circle.

If the center of the circle is the origin (0, 0), then the equation is:

$$x^2 + y^2 = r^2$$

- ▶ h=0
- ▶ k=0
- r=> the radius

Graphing a Circle

- Graph each equation.
- (You know these are circles, because of the standard form of a circle equation)

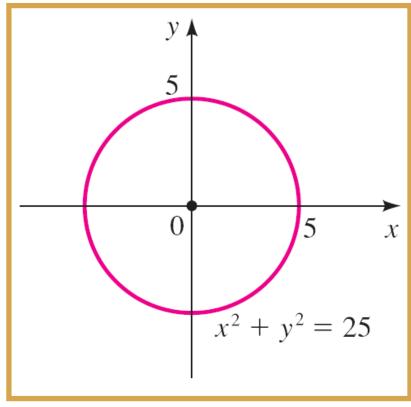
(a)
$$x^2 + y^2 = 25$$

(b)
$$(x-2)^2 + (y+1)^2 = 25$$

Graphing a Circle

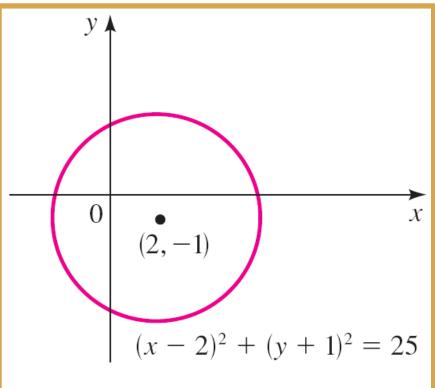
Rewriting the equation as $x^2 + y^2 = 5^2$, we see that that this is an equation of:

• The circle of radius 5 centered at the origin.



Graphing a Circle

- Rewriting the equation as
 (x 2)² + (y + 1)² = 5², we see that this is an equation of:
 - The circle of radius
 5 centered at (2, -1).



So, notice that the center point also happens to be the midpoint of

So, by the Midpoint Formula, the center is:

$$\left(\frac{1+5}{2},\frac{8-6}{2}\right) = (3, 1)$$

• The radius *r* is the distance from *P* to the center.

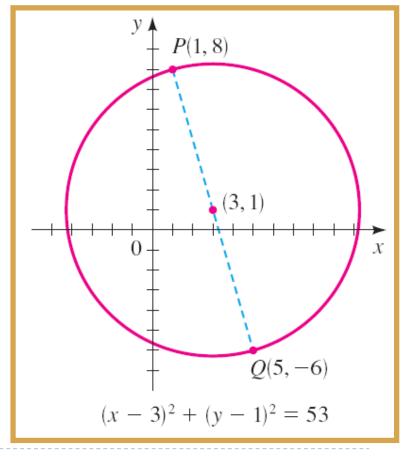
So, by the Distance Formula,

$$r^{2} = (3 - 1)^{2} + (1 - 8)^{2}$$

= 2² + (-7)²
= 53

Hence, the equation of the circle is:

$$(x-3)^2 + (y-1)^2 = 53$$



• Let's expand the equation of the circle in the preceding example.

(x - 3)² + (y - 1)² = 53 (Standard form)
 x² - 6x + 9 + y² - 2y + 1 = 53 (Expand the squares)
 x² - 6x + y² - 2y = 43 (Subtract 10 to get the expanded form)

- Notice that you can then "complete the square" to get the equation of the circle back
 - To do that, we need to know what to add to an expression like $x^2 6x$ to make it a perfect square.
 - That is, we need to complete the square—as in the next example.

E.g. 7—Identifying an Equation of a Circle

Show that the equation

$$x^2 + y^2 + 2x - 6y + 7 = 0$$

represents a circle.

Find the center and radius of the circle.

Identifying an Equation of a Circle

- First, notice you should have $x^{2 \text{ and }} y^{2}$
- (big indicators)
- Second, group the x-terms and y-terms.
- Then, we <u>complete the square</u> within each grouping.
 - We complete the square for $x^2 + 2x$ by adding $(\frac{1}{2} \cdot 2)^2 = 1$.
 - We complete the square for y² − 6y by adding
 [¹/₂ · (−6)]² = 9.

Identifying an Equation of a Circle

$$(x^{2}+2x)+(y^{2}-6y)=-7$$
 (Group terms)

$$(x^{2}+2x+1)+(y^{2}-6y+9)=-7+1+9$$

(Complete the square by

adding 1 and 9 to each side)

$$(x+1)^2 + (y-3)^2 = 3$$

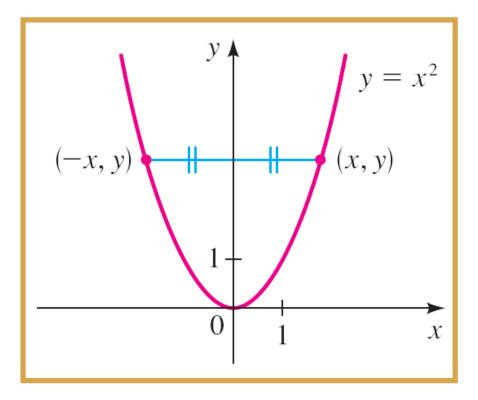
(Factor and simplify)

Symmetry – an attribute of a shape or relation (function), exact reflection of form on an opposite sides of a dividing line such as axis.

Symmetry

The figure shows the graph of y = x²

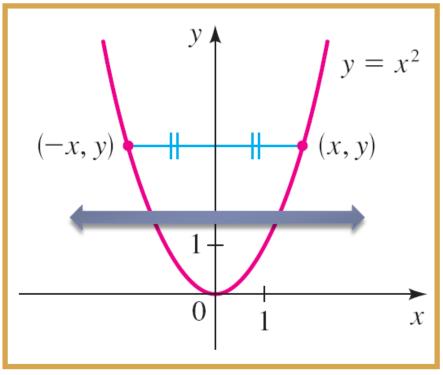
Notice that the part of the graph to the left of the y-axis is the mirror image of the part to the right of the y-axis.



Symmetry

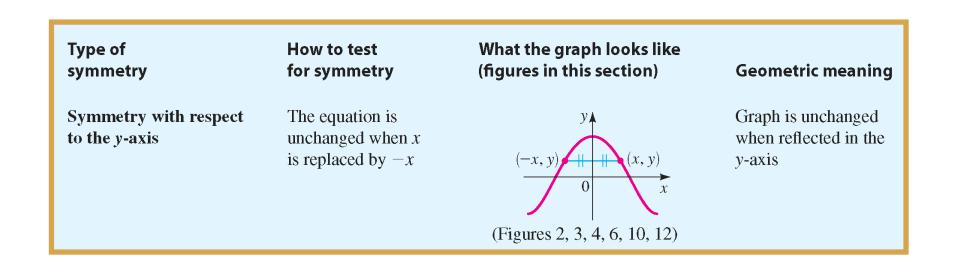
The reason is that, if the point (x, y) is on the curve, then so is (-x, y), and these points are reflections of each

other about the y-axis.



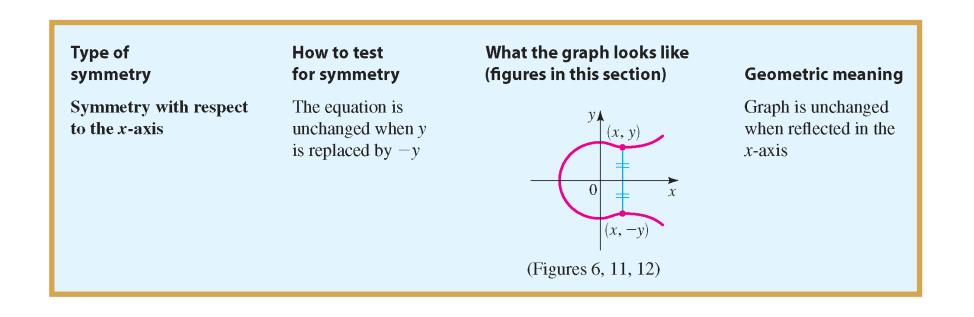
Symmetric with Respect to y-axis

In this situation, we say the graph is symmetric with respect to the y-axis.

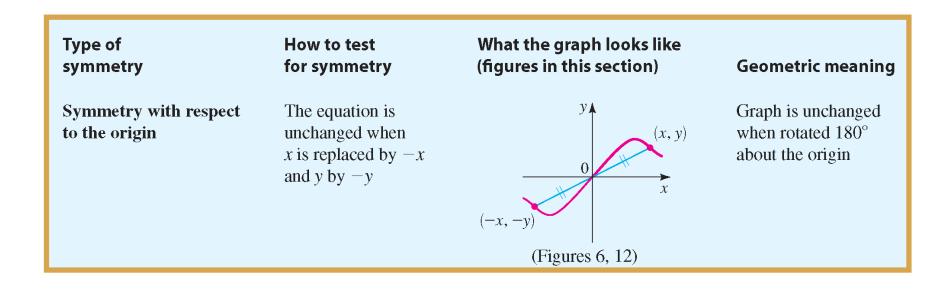


Symmetric with Respect to x-axis

Similarly, we say a graph is symmetric with respect to the x-axis if, whenever the point (x, y) is on the graph, then so is (x, -y).



Symmetric with Respect to Origin A graph is symmetric with respect to the origin if, whenever (x, y) is on the graph, so is (-x, -y).



Using Symmetry to Sketch a Graph

- Test the equation x = y² for symmetry and sketch the graph.
- If y is replaced by -y in the equation $x = y^2$, we get: • $x = (-y)^2$ (Replace y by -y) • $x = y^2$ (Simplify)

So, the equation is unchanged. Thus, the graph is symmetric about the *x*-axis.

E.g. 8—Using Symmetry to Sketch a Graph

• However, changing x to -x gives the equation $-x = y^2$

- > This is not the same as the original equation.
- So, the graph is not symmetric about the y-axis.

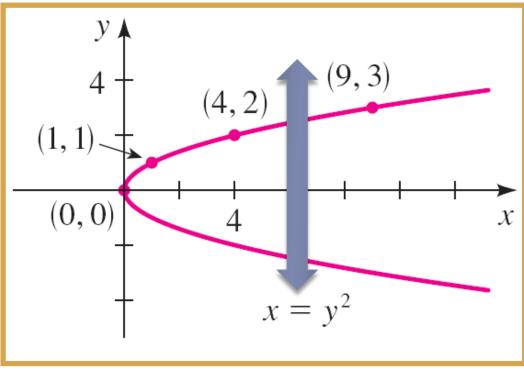
E.g. 8—Using Symmetry to Sketch a Graph

- We use the symmetry about the x-axis to sketch the graph.
- First, we plot points just for y > 0.

0 0	(0, 0)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(0, 0) (1, 1) (4, 2) (9, 3)

E.g. 8—Using Symmetry to Sketch a Graph

Then, we reflect the graph in the x-axis.



Testing an Equation for Symmetry

If we replace x by -x and y by -y, we get:

$$-y = (-x^{3}) - 9(-x)$$

$$-y = -x^{3} + 9x$$
 (Simplify)

$$y = x^{3} - 9x$$
 (Multiply by -1)

- So, the equation is unchanged.
- This means that the graph is symmetric with respect to the origin.