## Coordinates and Graphs

2.1 The Coordinate Plane

## Coordinate Geometry

" "The coordinate plane is the link between algebra and geometry."

- It is a palette for plotting the expressions and equations we have been working with
- In the coordinate plane, we can draw graphs of algebraic equations.
- In turn, the graphs allow us to visualize the relationship between the variables in the equation.


## The Coordinate Plane

- Points on a line can be identified with real numbers to form the coordinate line.
- Similarly, points in a plane can be identified with ordered pairs of numbers to form the coordinate plane or Cartesian plane.
- $(x, y)$ is a point on a plane, a plane is a 2D surface


## Axes

- To do this, we draw two perpendicular real lines that intersect at 0 on each line.
- One line is horizontal with positive direction to the right and is called the $x$-axis.
- The other line is vertical with positive direction upward and is called the $y$-axis.


## Origin \& Quadrants

- The point of intersection of the $x$-axis and the $y$-axis is the origin 0 .
- The two axes divide the plane into four quadrants, labeled I, II, III, and IV here.



## Origin \& Quadrants

- The points on the coordinate axes are not assigned to any quadrant.


Figure 1

## Ordered Pair

- Any point $P$ in the coordinate plane can be located by a unique ordered pair of numbers $(a, b)$.
- The first number a is called the $x$-coordinate of $P$.
- The second number $b$ is called the $y$-coordinate of $P$.


Figure 1

## Coordinates

The coordinates of a point are its address or location in the coordinate plane

- They specify its location in the plane.


Figure 1

## Coordinates

## - Several points are labeled with their coordinates in this figure.

When $x<0$, you will be in which quadrants?

How about when $\mathrm{y}<0$ ?


Figure 2

## Graphing Regions in the Coordinate Plane

- Describe and sketch the regions given by each set.
(a) $\{(x, y) \mid x \geq 0\}$
(b) $\{(x, y) \mid y=1\}$
(c) $\{(x, y)||y|<I\}$

The translation is "All points of $x$ and $y$ such that $x$ is greater than or equal to 0 "
" $\mid$ " is "such that"

Regions in the Coord. Plane

- The points whose $x$-coordinates are 0 or positive lie on the $y$-axis or to the right of it.


Figure 3

## Regions in the Coord. Plane

The set of all points with $y$-coordinate $I$ is a horizontal line one unit above the $x$-axis.

When a variable in the
coordinate plane equals a constant it is line


Figure 3

## Regions in the Coord. Plane

- Recall from Section I. 7 that


## $|y|<1 \quad$ if and only if $\quad-1<y<1$

- So, the given region consists of those points in the plane whose $y$-coordinates lie between $-I$ and $I$.
- Thus, the region consists of all points that lie between (but not on) the horizontal lines $y=1$ and $y=-I$.


## E.g. 1-Regions in the Coord. Example (c)

- These lines are shown as broken lines here to indicate that the points on these lines do not lie in the set.
- Like the open interval concept


Figure 3

- The Distance Formula


## The Distance Formula

- So, from the figure, we see that:
* The distance between the points $A\left(x_{1}, y_{1}\right)$ and $C\left(x_{2}, y_{1}\right)$ on a horizontal line must be $\left|x_{2}-x_{1}\right|$.
- The distance between $B\left(x_{2}, y_{2}\right)$ and $C\left(x_{2}, y_{1}\right)$ on a vertical line must be $\left|y_{2}-y_{1}\right|$.


Figure 4

## The Distance Formula

- Triangle $A B C$ is a right triangle.
- So, the Pythagorean Theorem gives:

$$
d(A, B)=\sqrt{\left|x_{2}-x_{1}\right|^{2}+\left|y_{2}-y_{1}\right|^{2}}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$



Figure 4

## Distance Formula

- The distance between the points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ in the plane is:

$$
d(A, B)=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

## Finding the Distance Between Two Points

Find the distance between the points $A(2,5)$ and $B(4,-1)$.
, Using the Distance Formula, we have:

$$
\begin{aligned}
d(A, B) & =\sqrt{(4-2)^{2}+(-1-5)^{2}} \\
& =\sqrt{2^{2}+(-6)^{2}} \\
& =\sqrt{4+36} \\
& =\sqrt{40} \approx 6.32
\end{aligned}
$$

## Finding the Distance Between Two Points

- We see that the distance between points $A$ and $B$ is approximately 6.32.



## E.g. 3-Applying the Distance Formula

- Which of the points $P(1,-2)$ or $Q(8,9)$ is closer to the point $A(5,3)$ ?
- By the Distance Formula, we have:

$$
\begin{aligned}
& d(P, A)=\sqrt{(5-1)^{2}+[3-(-2)]^{2}}=\sqrt{4^{2}+5^{2}}=\sqrt{41} \\
& d(Q, A)=\sqrt{(5-8)^{2}+[3-9]^{2}}=\sqrt{(-3)^{2}+(-6)^{2}}=\sqrt{45}
\end{aligned}
$$

Applying the Distance Formula

- This shows that $d(P, A)<d(Q, A)$
- So, $P$ is closer to $A$.

- The Midpoint Formula


## The Midpoint Formula

- Let's find the coordinates $(x, y)$ of the midpoint $M$ of the line segment that joins the point $A\left(x_{1}, y_{1}\right)$ to the point $B\left(x_{2}\right.$, $y_{2}$ ).
- Goal: Find a point on the line between point $A$ and $B$
- What is the address of $A$ and $B$ ?


## Midpoint Formula

- The midpoint of the line segment from $A\left(x_{1}, y_{1}\right)$ to $B\left(x_{2}, y_{2}\right)$ is:

$$
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

Makes sense, if you
are on a Cartesian
coordinate system
where the origin is 0

Finding the Midpoint of a Line The midpoint of the line segment that joins the points $(-2,5)$ and $(4,9)$ is

$$
\left(\frac{-2+4}{2}, \frac{5+9}{2}\right)=(1,7)
$$



## Applying the Midpoint Formula

- Show that the quadrilateral with vertices

$$
P(1,2), Q(4,4), R(5,9) \text {, and } S(2,7)
$$

is a parallelogram by proving that its two diagonals bisect each other.

## Applying the Midpoint Formula



## Applying the Midpoint Formula



The corners are vertices and they are labelled points, PRSQ. (Not too original)
Each point has two coordinates
$\mathrm{P}->\mathrm{R}$ is connected by a line S->Q is connected by a line The midpoint of both lines is the midpoint of the quadrilateral

Applying the Midpoint Formula

- If the two diagonals have the same midpoint, they must bisect each other.
- The midpoint of the diagonal $P R$ is:

$$
\left(\frac{1+5}{2}, \frac{2+9}{2}\right)=\left(3, \frac{11}{2}\right)
$$

The midpoint of the diagonal QS is:

$$
\left(\frac{4+2}{2}, \frac{4+7}{2}\right)=\left(3, \frac{11}{2}\right)
$$

## Applying the Midpoint Formula

Thus, each diagonal bisects the other.

- A theorem from elementary geometry states that the quadrilateral is therefore a parallelogram.


