CS480

Top Down Parsing
Ch 4 p 161-165, 181-195

February 24, 2013

CS 480 — Spring 2013

Pacific University

Parsing
« Will the following code parse?
* Is it valid C code?

#include <stdio.h>

int main()

{
X ++;

}

CS 480 — Spring 2013

Pacific University

Top Down Parsing
 Find left most derivation of a string

» Backtracking

* Predictive

CS 480 — Spring 2013

Pacific University

S -> cBd
B ->ab | a

a) Is this grammar ambiguous?
b) Is this grammar left-recursive?

c) Show S =>" cad
Is backtracking necessary?

d) Can this grammar be left factored?

CS 480 — Spring 2013

Pacific University

Top Down Parsing

e Recursive decent
— no backtracking

— no left-recursion (left factored)

« LL(1) parsing
— L: Left to right

— L: Left most derivation
— (1): One lookahead token

CS 480 — Spring 2013

Pacific University

Grammar

expr -> expr op term | term

op -> + | -

term -> term mulop factor |
factor

mulop -> *
factor -> (expr) | num

CS 480 — Spring 2013

Pacific University

Parse Tables

* Not all grammars are good for recursive
descent

— backtracking can be expensive
* LL(1) uses a stack instead of recursion

« Use FIRST and FOLLOW to build predictive
parse tables

CS 480 — Spring 2013

Pacific University

Example Grammar

TE'
+TE' | €
FT'
*FT' | €
(E) | id

CS 480 — Spring 2013

Pacific University

FIRST

“Let FIRST () be the set of terminals that
begin the strings derived from a. If a =>"€,

then € is also in FIRST(x)." Aho p 188

IRS']
IRS']
IRS']
IRS']

T]] 1 T T

(E)
[(E)
(F)
(1)

IRS']

(T")

FIRST(EXPRESSION) is to be
used in your top-down parser to
identify the beginning of an
expression or €

CS 480 — Spring 2013

Pacific University

FOLLOW

 "FOLLOW(N), for nonterminal N, is the set
of terminals t that can appear immediately to
the right of N in some sentential form, that
is, the set of terminals t such that there exists
a derivation of the form S =>" alNt3 for some

a and [3." Aho, p 189

FOLLOW(E)
FOLLOW(E)
FOLLOW(F)
FOLLOW(T)
FOLLOW(T)

CS 480 — Spring 2013

Pacific University

Parse Table Construction

for (each nonterminal N and production
possibility N -> @)

for (each token t in the FIRST(Q)

{
Add N -> o to TBL[N,t]

if (€ is an element of FIRST(Q)

for (each token a in the FOLLOW(N),
Add N -> a to TBL[N, t]

CS 480 — Spring 2013

Pacific University

FIRST(E) = FIRST(T) = FIRST(F) = { id, (}
FIRST(E) = { +, €} Parse Table

FIRST(T') = {*, €} FOLLOW(E) = FOLLOW(E") = {$,) }
FOLLOW(T) = FOLLOW(T) ={ $, +,)}
FOLLOW(F) = {$, *, +,) }

+ * () id $

I -> TE' =
’E' -> +TE' |
3SE' -> €

-
i > FT'

T
5Tl -> *FT'
6Tl -> 8 F
'F-> (E)
8 -> id

CS 480 — Spring 2013
Pacific University

Error Handling

 Goals

— Report presence oferrors clearly and accurately
— Recover quickly to find more errors
— Should not slow down processing

* LL & LR detect errors quickly

— Viable-prefix property: detect an error as soon as
a prefix is seen that is not a viable prefix for any
string in the language.

CS 480 — Spring 2013

Pacific University

Error Recovery

Poor error handling adds spurious errors
— Syntactic or semantic

Panic Mode

Phase level recovery
Error Productions

Global corrections

CS 480 — Spring 2013

Pacific University

	CS310
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

