
Coding Standards for C
Version 5.0

Why have coding standards?
It is a known fact that 80% of the lifetime cost of a piece of software goes to maintenance. Therefore
it makes sense for all programs within an organization to be as consistent as possible. Code
conventions also improve the readability of the software.

This document specifies the coding standards for all Computer Science courses at Pacific University
that use the C programming language. It is important for you to adhere to these standards in order to
receive full credit on your assignments.

This document is divided into four main sections:
• Naming Conventions
• Formatting
• Comments
• Printing

Naming Conventions

Constants

A constant is to be mnemonically defined using all capital letters and underscores such as
MAX_NAME_CHARS. Further, your program is to contain no "magic constants." That is, all magic
constants must be #defined to make program modification easier. In the case below, 100 is a magic
constant and if used in several places throughout a program, can create problems if 100 is to be
modified for any reason.

Poor Program Style

input = fopen ("scores.dat", "r");
.....
for (indx = 0; indx < 100; indx++)
{
.....
}

1

Correct Program Style

#define MAX_SCORES 100
#define SCORES_FILE "scores.dat"

pScoresFile = fopen (SCORES_FILE, "r");
.....
for (indx = 0; indx < MAX_SCORES; indx++)
{
.....
}

Notice: Constants like 0 and 1 are usually acceptable unless they represent values such as true and
false in which case they should be #defined.

Variable Names

1) A variable name is defined in all lowercase letters unless the variable name contains multiple
names such as studentRecord. After the first word, each subsequent word has the first letter
capitalized with the remainder of the word made up of lowercase letters.

2) Variable names are to be mnemonic unless the variable is being used in a for loop in which case
the names i, j, k, l, m, n are acceptable names to be used. If however the nested loop is being used
in conjunction with a two-dimensional array, then the names row and col should be used.

3) Global variables must begin with g so that a name such as gHashTable denotes a global variable.

4) Function names will begin with the name of the module in which they are found. Module names are
to be two to five letters long. The example below shows that the module name is stk which stands for
stack. Function stkPush can be found in the module stk.

5) To aid in identifying the type of a variable, we will use the following prefixes.

Type Indicator is a Text Prefix Variable Name Example
boolean b bFlag
pointer p char *pName
handle h void **hWindow
null terminated string sz char pszFileName
structure s Home sPerson
function module name stkPush
globals g char gNumFiles

2

Poor Program Style

int L (char *n)
{
 int i;

 for (i = 0; *(n + i) != '\0'; ++i)
 {
 }

 return i;
}

Good Program Style

int strLength (char *pszStr)
{
 int count;

 for (count = 0; '\0' != *(pszStr + count); ++count)
 {
 }

 return count;
}

Struct Names

Struct definitions will follow the regular variable naming conventions except the first letter of the struct
must be capitalized. Further, struct definitions are to exist in a header file (.h file) associated with
the .c source file associated with the project.

Poor Program Style for Structs

typedef struct t
{
 int d;
 int h;
 int m;
 int s;
} t;

3

Good Program Style for Structs

typedef struct Time
{
 int days;
 int hours;
 int minutes;
 int seconds;
} Time;

Implementation Example

The first file is a .h file that contains the definitions of the library. The second file is a .c (NOT .cpp) file
that contains the actual implementation of the functions included in the library definition. The .c file
includes the .h file at the top of the file.

Rational Example

/**
 File name: rat.h
 Author: Joe Bloggs
 Date: 1/15/08
 Class: CS300
 Assignment: Rational
 Purpose: To define the header file for the rational module
**/

#ifndef RAT_H
#define RAT_H

typedef struct Rational
{
 int numerator;
 int denominator;
} Rational;

extern void ratPrint (Rational);
extern void ratSet (Rational *, int, int);
extern int ratIsEqual (Rational, Rational);
extern Rational ratMultiply (Rational, Rational);

#endif

/**
 File name: rat.c
 Author: Joe Bloggs
 Date: 1/15/08
 Class: CS300
 Assignment: Rational
 Purpose: This is the implementation file for each of the rational
 functions associated with the rational module.
**/

4

#include <stdio.h>
#include "rat.h"

/**
 Function: ratPrint

 Description: Outputs a fraction in the form
 numerator / denominator to the screen

 Parameters: sRational - a fraction to be printed

 Returned: None
**/

void ratPrint (Rational sRational)
{

 printf ("%d / %d", sRational.numerator, sRational.denominator);
}

/**
 Function: ratSet

 Description: Initializes a fraction to the values of the numerator and
 denominator passed in.

 Parameters: sRational - a fraction
 numerator - numerator initialization value

 denominator - denominator initialization value

 Returned: None
**/

void ratSet (Rational *psRational, int numerator, int denominator)
{

psRational->numerator = numerator;
psRational->denominator = denominator;

}

/**
 Function: ratIsEqual

 Description: Compares two fractions returning a value of true if the
 numerators and denominators of both fractions are the same.

 Parameters: sRational1 - first fraction used in comparison
 sRational2 - second fraction used in comparison

 Returned: true if objects are equal; else, false
**/

int ratIsEqual (Rational sRational1, Rational sRational2)
{
 return ((sRational1.numerator == sRational2.numerator) &&
 (sRational1.denominator == sRational2.denominator));

5

}

/**
 Function: ratMultiply

 Description: Multiples the numerators and denominators of two fractions.

 Parameters: sRational1 - first rational number
 sRational2 - second rational number

 Returned: A fraction that contains the result of the multiplication.
**/

Rational ratMultiply (Rational sRational1, Rational sRational2)
{
 Rational sFraction;

 ratSet (&sFraction, 0, 0);
 sFraction.numerator = sRational1.numerator * sRational2.numerator;
 sFraction.denominator = sRational1.denominator * sRational2.denominator;

 return sFraction;
}

Formatting

Indentation

Two spaces must be used as the unit of indentation per tab. Every IDE (Integrated Development
Environment) such as Visual Studio or Eclipse includes an option for changing the number of spaces
in a tab. These can usually be found in the preferences section.

Line Length

Lines must be no longer than 78 characters. Anything longer than 80 characters is normally not
handled well in many terminals and tools.

Wrapping Lines

If an expression cannot fit on a single line then break it:
• After a comma
• Before an operator

Make sure that the new line is aligned with the beginning of the expression at the same level on the
previous line.

Spaces

All arithmetic and logical operators must have exactly one space before and after the operator. The
only exceptions are:

6

• Unary operators
• The period
• No spaces before the comma and only one space after the comma

Blank Lines

Use blank lines to separate distinct pieces of code. For example, one blank line before and after a
while loop helps the code reader. The important thing to remember is that blank lines must be used
consistently.

Braces

Any curly braces that you use in your program (e.g. surrounding structs, functions) must appear on
their own lines. Any code within the braces must be indented relative to the braces.

typedef struct Rational
{
 int numerator;
 int denominator;
} Rational;

Comments

Comments should be used to explain the purpose of the code fragment they are grouped with.
Comments should state what the code is doing, while the code itself shows how you are doing it.

Use comments sparingly and only comment code segments that are not obvious. Giving your
variables meaningful names will improve the readability of your code and reduce the need for
comments.

File Header

The main purpose of a file header is to explain the purpose of the module as briefly as possible. You
must include the following sections in your module header:

• File name
• Your name
• Date
• Class Title
• Assignment Title
• Purpose

/**
 File name: main.c
 Author: Joe Bloggs
 Date: 1/15/08

7

 Class: CS300
 Assignment: Rational
 Purpose: This program is the driver to test the rational module.
**/
#include <stdio.h>
#include "rat.h"

int main(int argc, char* argv[])
{
 Rational sRational1, sRational2;

 ratSet (&sRational1, 1, 2);
 ratSet (&sRational2, 2, 4);
 ratPrint (sRational1);
 printf ("\n");
 ratPrint (sRational2);
 printf ("\n");
 printf ("%i\n", ratIsEqual (sRational1, sRational2));
 printf ("\n");
 ratPrint (ratMultiply (sRational1, sRational2));
 printf ("\n");
 return 0;
}

Declaration Comments

Variables must be declared so that comments are not necessary to explain the variable's meaning.
You must also group together variables that are related.

int seconds;
int minutes;
int hours;
char *pszFirstName;
char *pszLastName;

Function Header

In the same way that a program header is used to describe the purpose of the program, the function
header is used to describe the purpose of the function. Each function header must include the
following:

• Function name
• Description
• Parameters
• Returned

Notice that each parameter exists on a single line and the – line up.

/**
 Function: ratSet

 Description: Initializes a fraction to the values of the numerator and
 denominator passed in.

8

 Parameters: psRational - a fraction
 numerator - numerator initialization value

 denominator - denominator initialization value

 Returned: None
**/

void ratSet (Rational *psRational, int numerator, int denominator)
{

psRational->numerator = numerator;
psRational->denominator = denominator;

}

Sidebar and In-line Comments

A sidebar comment appears on the same line as the single statement it is describing. The comment
must be brief and not exceed that line. Only document statements that are not obvious. The following
documentation is not necessary for experienced C programmers but shows what a sidebar comment
looks like.

value <<= 1; /* multiply value by 2 */

In-line comments appear on their own lines and precede the segment of code they describe. You
should use in-line comments to describe complex code that is not limited to a single statement. You
must use blank lines to separate the comments from the segments of code they are describing. The
comment below would not be placed in an actual program as it is obvious what the code is doing;
however, the example illustrates what an in-line comment is to look like.

/* If the file exists, open the input file for reading */

if ((pInFile = fopen (SCORES_FILE, "r")) != NULL)
{

}

Although using comments helps in describing your code, you must always make sure that your
variables have meaningful names to make the code more understandable.

Printing

When printing your code you must use a fixed width font. Courier and Courier New are examples of
fixed width fonts. You must also make sure that your lines do not wrap nor do they get cut off when
printing. All printing is to be done in Portrait and the printing order for the files is as follows:

1) the program file containing main
2) header (.h) / implementation (.c) pairs for each module

Note: Each module is to have a separate .h and .c file.

9

The final output you will turn in is to be printed in color since comments, keywords, strings, etc are
highlighted for easy reading.

10

	Coding Standards for C
	Version 5.0

	Why have coding standards?
	Formatting

	Indentation
	Line Length
	Wrapping Lines
	Spaces
	Blank Lines
	Braces
	Comments
	File Header

	Declaration Comments
	Function Header
	Sidebar and In-line Comments
	Printing

