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The Plan

• Bottom Up Parsing
• Handles
• Shift/Reduce
• Operator Precedence Parsing
• Building Operator Precedence Tables
• Wednesday: Build an OPT in class

I hate wordy slides.
This topic is too precise
for me to get correct
without lots of hints.
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Bottom Up Parsing
• Build parse tree from leaves and work up!

– Reduce a string, w, to the start symbol, S

• Reduction: replace a substring that matches 
the RHS of a production with the LHS of 
that production
– Right most derivation is run in

reverse.
abbcde

S -> aABe
A -> Abc | b
B -> d
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Algorithm
1) Look for a substring in w that matches the 
right side of any production. 

2) Repeat step 1) with the new string w' until 
the start symbol S is produced (accept) or we 
run out of matching possibilities (reject)

abbcde 
– Problems?

S -> aABe
A -> Abc | b
B -> d
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Handle

• A handle is a substring of a string that 
matches some production's right side such 
that a reduction to a nonterminal on the left 
can be done in one step along the reverse of 
a rightmost derivation. 

abbcde

S -> aABe
A -> Abc | b
B -> d
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Practice
• page 196/198

Right Most Derivation
• Remember, we are

doing bottom up
parsing, so we start
right here

• Ambiguous grammar so 1+    =>
rm

• Handle Pruning

E -> E + E
E -> E * E
E -> ( E )
E ->  id

E => E  + E
  => E  + E   * E 
  => E  + E   * id

3

  => E  + id
2  
* id

3

  => id
1
 + id

2
 * id

3
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How to choose a Handle
• Add a restriction

• Defn[Aho]: "A handle of a right-sentential 
form γ is a production A -> β and a position 
of γ where the string β may be found and 
replaced by A to produce the previous right-
sentential form in the rightmost derivation 
of γ. 
That is, if S =>*

rm
αAw =>

rm
 αβw, 

then A -> β in the position following α is a 
handle of αβw." 

We'll see an implementable
algorithm for this later.
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Shift Reduce Parsing
• p199 ex4.24

E -> E + E
E -> E * E
E -> ( E )
E ->  id

Stack Input Action

$ id + id * id $ shift

$id + id * id $ Reduce       E -> id

$E + id * id $ shift
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CONFLICTS!
• p 201

• Some CFGs have unresolvable conflicts
– shift/reduce
– reduce/reduce

stmt -> if expr then stmt
| if expr then stmt else stmt
| other

Stack Input Action

$ ... if expr then stmt else ... $  ?????



CS 480 – Spring 2009
Pacific University

Operator Precedence Parsing
• Form of Shift/Reduce parsing

• Two important properties for these shift-
reduce parsers is that ε does not appear on 
the right side of any production and no 
production has two adjacent nonterminals.

E -> E + E
T -> + T T

This allows us
to find handles!
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Precedence
• We need to define three different precedence 

relations between pairs of terminals

They look like  >, <, and == but are very 
different

Relation Meaning

a <. b a yields precedence to b

a =. b a has the same precedence as b

a >. b  a takes precedence over b
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Why?

• Identify each handle using the precedence 
rules and reduce the right-sentential string, 
based on the precedence relations, to a start 
(accept) state.
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Precedence Table E -> E + T | T
T -> T * F | F
F -> id

id + * $

id >. >. >.

+ <. >. <. >.

* <. >. >. >.

$ <. <. <. accept

Input

Stack

Define precedence relations between
terminals.
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How does this work? (high level) p205

$ id + id * id $

$ <. id >. + <. id >.  * <. id >. $

• Scan from left (to right) until the first >. is found

• Then, scan backwards (left) until a <. is found

• The handle is everything to the left of the >. and 
right of the <.
– Including surrounding nonterminals
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In Code, p206 Algo 4.5
• How to find a handle
• Use a stack

• If the precedence relation <. or =. holds 
between the topmost terminal on the stack 
and the next input symbol,  SHIFT

• If the relation >. holds, REDUCE
• No relation, SYNTAX ERROR

This is the solution
to the bottom up 
assignment!
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Example
Handle/Output Stack Input Reason

$ id + id * id $ Start State

$ id +id*id$ $ <. id
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Unary Operators
• In your grammar:  *,  &, -

• Example: Unary prefix operator
~ (not operator. Is not also a binary operator)
X <. ~ for any op X
~ >. X if ~ has higher precedence than X, 
and ~ <. X otherwise
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Unary op is also a binary op
• * is dereference and multiplication
• - is  negation and subtraction
• & is not also binary

• Use lexer to return different token for
– Dereference/Multiplication
– Negation/Subtraction

• How?
– Lexer needs to remember the previous token!
– Cannot look ahead
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Define
• Operator-precedence grammar is an ε-free 

operator grammar in which the precedence

relations <.,=.,>. constructed as previous are 
disjoint.  For any pair of terminals, a and b, 
never more than one of the relations a <.b, 
a=.b ,a >. b is true.
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Create Table
• Let G be an ε-free operator grammar
• For each two terminals a and b we say:

• a =. b if there exists a RHS: αaβbγ where β is 
either ε or a single nonterminal.

• a <. b if for some NT A, a RHS  αaAβ exists, 
and A=>+ γbδ, where γ is either ε or a single 
NT

• a >. b if for some NT A, a RHS αAbβ exists, 
and A=>+ γaδ, where δ is either ε or a single 
NT



CS 480 – Spring 2009
Pacific University

LEADING, TRAILING

• LEADING: for each NT, those terminals that 
can be the first terminal in a string derived 
from that NT

• TRAILING: for each NT, those terminals 
that can be the last terminal in a string 
derived from that NT
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Leading/Trailing E -> E + T | T
T -> T * F | F 
F -> (E) | id

Nonterminal First terminal Last terminal

E

T

F
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Compute Precedence
• For =. look for RHS with two 

terminals separated by nothing 
or a NT

• <. Look for RHS with a terminal immediately to 
the left of a NT (a, A in rule above) For each, a is 
<. to any terminal LEADING(A) 

• >. Look for a RHS with a nonterminal 
immediately to the left of a terminal (A, b rule 
above). Every terminal TRAILING(A) >. b

E -> E + T | T
T -> T * F | F 
F -> (E) | id
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Compute Precedence
• Algo 5.2 on handout!

+ * ( ) id $

+

*

(

)

id

$
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• EXTRA
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Create Operator Precedence Table
• Page 207: heuristic for arithmetic expressions
• Precedence & Associativity

• If op X has higher precedence than op Y, make 
X >. Y and Y <. X

• If op X and op Y have equal precedence, make 
X >. Y and Y >. X if they are left assoc.
X <. Y and Y <. X if they are right assoc.

• X <. id, id >. X, X <. (, (<. X, ) >.X, X >. ), X 
>. $, $<.X, for all op X

• More on page 207



CS 480 – Spring 2009
Pacific University

Build the table!

+ - * / ^ id ( ) $

+

-

*

/

^

id

(

)

$

Operators Associativity

^ right

* / left

+ - left

High

Low
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