
CS 480 – Spring 2009
Pacific University

CS480

Bottom Up Parsing
Ch 4 p 195-215 + handouts!

Read this by Monday.

March 6, 2009

CS 480 – Spring 2009
Pacific University

The Plan

• Bottom Up Parsing
• Handles
• Shift/Reduce
• Operator Precedence Parsing
• Building Operator Precedence Tables
• Wednesday: Build an OPT in class

I hate wordy slides.
This topic is too precise
for me to get correct
without lots of hints.

CS 480 – Spring 2009
Pacific University

Bottom Up Parsing
• Build parse tree from leaves and work up!

– Reduce a string, w, to the start symbol, S

• Reduction: replace a substring that matches
the RHS of a production with the LHS of
that production
– Right most derivation is run in

reverse.
abbcde

S -> aABe
A -> Abc | b
B -> d

CS 480 – Spring 2009
Pacific University

Algorithm
1) Look for a substring in w that matches the
right side of any production.

2) Repeat step 1) with the new string w' until
the start symbol S is produced (accept) or we
run out of matching possibilities (reject)

abbcde
– Problems?

S -> aABe
A -> Abc | b
B -> d

CS 480 – Spring 2009
Pacific University

Handle

• A handle is a substring of a string that
matches some production's right side such
that a reduction to a nonterminal on the left
can be done in one step along the reverse of
a rightmost derivation.

abbcde

S -> aABe
A -> Abc | b
B -> d

CS 480 – Spring 2009
Pacific University

Practice
• page 196/198

Right Most Derivation
• Remember, we are

doing bottom up
parsing, so we start
right here

• Ambiguous grammar so 1+ =>
rm

• Handle Pruning

E -> E + E
E -> E * E
E -> (E)
E -> id

E => E + E
 => E + E * E
 => E + E * id

3

 => E + id
2
* id

3

 => id
1
 + id

2
 * id

3

CS 480 – Spring 2009
Pacific University

How to choose a Handle
• Add a restriction

• Defn[Aho]: "A handle of a right-sentential
form γ is a production A -> β and a position
of γ where the string β may be found and
replaced by A to produce the previous right-
sentential form in the rightmost derivation
of γ.
That is, if S =>*

rm
αAw =>

rm
 αβw,

then A -> β in the position following α is a
handle of αβw."

We'll see an implementable
algorithm for this later.

CS 480 – Spring 2009
Pacific University

Shift Reduce Parsing
• p199 ex4.24

E -> E + E
E -> E * E
E -> (E)
E -> id

Stack Input Action

$ id + id * id $ shift

$id + id * id $ Reduce E -> id

$E + id * id $ shift

CS 480 – Spring 2009
Pacific University

CONFLICTS!
• p 201

• Some CFGs have unresolvable conflicts
– shift/reduce
– reduce/reduce

stmt -> if expr then stmt
| if expr then stmt else stmt
| other

Stack Input Action

$... if expr then stmt else ... $?????

CS 480 – Spring 2009
Pacific University

Operator Precedence Parsing
• Form of Shift/Reduce parsing

• Two important properties for these shift-
reduce parsers is that ε does not appear on
the right side of any production and no
production has two adjacent nonterminals.

E -> E + E
T -> + T T

This allows us
to find handles!

CS 480 – Spring 2009
Pacific University

Precedence
• We need to define three different precedence

relations between pairs of terminals

They look like >, <, and == but are very
different

Relation Meaning

a <. b a yields precedence to b

a =. b a has the same precedence as b

a >. b a takes precedence over b

CS 480 – Spring 2009
Pacific University

Why?

• Identify each handle using the precedence
rules and reduce the right-sentential string,
based on the precedence relations, to a start
(accept) state.

CS 480 – Spring 2009
Pacific University

Precedence Table E -> E + T | T
T -> T * F | F
F -> id

id + * $

id >. >. >.

+ <. >. <. >.

* <. >. >. >.

$ <. <. <. accept

Input

Stack

Define precedence relations between
terminals.

CS 480 – Spring 2009
Pacific University

How does this work? (high level) p205

$ id + id * id $

$ <. id >. + <. id >. * <. id >. $

• Scan from left (to right) until the first >. is found

• Then, scan backwards (left) until a <. is found

• The handle is everything to the left of the >. and
right of the <.
– Including surrounding nonterminals

CS 480 – Spring 2009
Pacific University

In Code, p206 Algo 4.5
• How to find a handle
• Use a stack

• If the precedence relation <. or =. holds
between the topmost terminal on the stack
and the next input symbol, SHIFT

• If the relation >. holds, REDUCE
• No relation, SYNTAX ERROR

This is the solution
to the bottom up
assignment!

CS 480 – Spring 2009
Pacific University

Example
Handle/Output Stack Input Reason

$ id + id * id $ Start State

$ id +id*id$ $ <. id

CS 480 – Spring 2009
Pacific University

Unary Operators
• In your grammar: *, &, -

• Example: Unary prefix operator
~ (not operator. Is not also a binary operator)
X <. ~ for any op X
~ >. X if ~ has higher precedence than X,
and ~ <. X otherwise

CS 480 – Spring 2009
Pacific University

Unary op is also a binary op
• * is dereference and multiplication
• - is negation and subtraction
• & is not also binary

• Use lexer to return different token for
– Dereference/Multiplication
– Negation/Subtraction

• How?
– Lexer needs to remember the previous token!
– Cannot look ahead

CS 480 – Spring 2009
Pacific University

Define
• Operator-precedence grammar is an ε-free

operator grammar in which the precedence

relations <.,=.,>. constructed as previous are
disjoint. For any pair of terminals, a and b,
never more than one of the relations a <.b,
a=.b ,a >. b is true.

CS 480 – Spring 2009
Pacific University

Create Table
• Let G be an ε-free operator grammar
• For each two terminals a and b we say:

• a =. b if there exists a RHS: αaβbγ where β is
either ε or a single nonterminal.

• a <. b if for some NT A, a RHS αaAβ exists,
and A=>+ γbδ, where γ is either ε or a single
NT

• a >. b if for some NT A, a RHS αAbβ exists,
and A=>+ γaδ, where δ is either ε or a single
NT

CS 480 – Spring 2009
Pacific University

LEADING, TRAILING

• LEADING: for each NT, those terminals that
can be the first terminal in a string derived
from that NT

• TRAILING: for each NT, those terminals
that can be the last terminal in a string
derived from that NT

CS 480 – Spring 2009
Pacific University

Leading/Trailing E -> E + T | T
T -> T * F | F
F -> (E) | id

Nonterminal First terminal Last terminal

E

T

F

CS 480 – Spring 2009
Pacific University

Compute Precedence
• For =. look for RHS with two

terminals separated by nothing
or a NT

• <. Look for RHS with a terminal immediately to
the left of a NT (a, A in rule above) For each, a is
<. to any terminal LEADING(A)

• >. Look for a RHS with a nonterminal
immediately to the left of a terminal (A, b rule
above). Every terminal TRAILING(A) >. b

E -> E + T | T
T -> T * F | F
F -> (E) | id

CS 480 – Spring 2009
Pacific University

Compute Precedence
• Algo 5.2 on handout!

+ * () id $

+

*

(

)

id

$

CS 480 – Spring 2009
Pacific University

• EXTRA

CS 480 – Spring 2009
Pacific University

Create Operator Precedence Table
• Page 207: heuristic for arithmetic expressions
• Precedence & Associativity

• If op X has higher precedence than op Y, make
X >. Y and Y <. X

• If op X and op Y have equal precedence, make
X >. Y and Y >. X if they are left assoc.
X <. Y and Y <. X if they are right assoc.

• X <. id, id >. X, X <. (, (<. X,) >.X, X >.), X
>. $, $<.X, for all op X

• More on page 207

CS 480 – Spring 2009
Pacific University

Build the table!

+ - * / ^ id () $

+

-

*

/

^

id

(

)

$

Operators Associativity

^ right

* / left

+ - left

High

Low

	CS310
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

