CS480

Syntax Analysis

Ch 4 p 159-195

February 23, 2009

CS 480 - Spring 2009
Pacific University

CS310 Problems

- Describe (in English) the language denoted by the regular expression $\left((\varepsilon \mid 0) 1^{*}\right)^{*}$
- Write regular definitions for:
- all strings that begin with an aa
- all strings that contain aa
- all strings that do not contain aa
- All are over the alphabet $\{a, b\}$.
- Construct an NFA for the regular expression $\left((\varepsilon \mid a) b^{*}\right)^{*}$

CFGs

expr -> expr op expr | (expr) | number | id
$o p->+1-1 *$

- Backus-Naur Form
< expr > : : = < expr > < op > < expr > | (< expr >) | NUMBER
$<$ op $>::=+1-1$ *

Notation from the Book

- Terminals
- Nonterminals
- String of terminals
- Greek Letters
- Alternate Forms
- Start production

Derivations

- $=>$
- can derive with one application of a production
- $=>*$
- can derive with zero or more applications of any productions

E $->$ (E$)$ | a
Does $\mathrm{E}=>^{*}((\mathrm{a}))$?
Does E $=>((\mathrm{a}))$?
Does $\mathrm{E}=>^{*}(\mathrm{a})(\mathrm{a})$?

Grammars

- G1: A -> Aa $\mid \mathrm{a}$
- G2: B -> aB|a
- Do G1 and G2 describe the same language?
- Are both G1 and G2 equivalent to a^{*} ?
- Are they ambiguous?
- How fix?
- Right or Left recursive?
- What problems could arise?
- Does $\mathrm{A}=>^{*} \varepsilon$

More...

- Give a CFG which generates sequences of one or more statements (s) separated by ;
- (i.e. $\mathrm{L}(\mathrm{G})=\{\mathrm{s} \mathrm{s;s} \mathrm{s;} \mathrm{;} \mathrm{;} \mathrm{}. \mathrm{..}$.$\})$
- Give a CFG which generates sequences of one or more statements where the semicolon is a terminator and not a separator (i.e. $\mathrm{L}(\mathrm{G})$ $=\{s ; s ; s ; s ; s ; s ; \ldots\})$

Parsing!

expr -> expr op expr | (expr) |

 number$$
o p->+1-1 * 1 /
$$

- Problem?
$1+3 * 8$
Left most? Right most?
- Ambiguity:
- Get rid of it OR
- Use rules to limit its impact

More..

expr -> expr op expr | term op $->+1-1$ *

term -> number

- Ambiguous?
- Why or why not?
- Precedence?

More still...

stmt -> ifstmt | other
ifstmt -> if (expr) stmt |
if (expr) stmt else stmt
expr -> T | F

- Thoughts?
- Fixes?

Immediate Left Recursion

- Immediate Left Recursion

$$
\begin{aligned}
& \text { E -> E + T | T } \\
& \text { T -> T * } \mathbf{F} \mid \mathrm{F} \\
& \text { F -> (E) | id }
\end{aligned}
$$

Differences?
Why is this important?

- Nonimmediate Left Recursion:

S -> Aa | b
A -> Ac | Sd | e

How do you remove each type?

Practice

S -> Ba | b
 B -> Sa | a

- What is the language?
- Eliminate all the left recursion
- Algorithm 4.1 on p 177

