CS480

Lexical Analysis
Ch 3 p83-113

February 16, 2009

CS 480 — Spring 2009

Pacific University

How do they all fit together?

Source Code
Lexical Analyzer

Parser
Symbol Table

Purpose of the Lexical analyzer?
Purpose of the parser?

Purpose of the ST?

Why separate them?

CS 480 — Spring 2009

Pacific University

CS310 Redux
Alphabet

String over some alphabet

Empty string

Language

— Regular Notations?
— non-regular

Union

Concatenation

Kleene closure
— Positive closure

Regular expression

CS 480 — Spring 2009

Pacific University

Usage

* Use above to define valid identifiers
— In C
— In our lexer

CS 480 — Spring 2009

Pacific University

Practice
-2[0-9]"
Integer Numbers ? Real Numbers?

All strings where every occurrence of a is
followed immediately by a single occurrence
of b over the alphabet {a,b}

— RE/DFA? (or prove you can't!)

Real numbers where the number of digits on
the left of the decimal point is equal to the
number of digits on the right.

— RE? (or prove you can't!)

CS 480 — Spring 2009

Pacific University

Definitions
Token

Pattern

Lexeme

How are these related?

Which part of the complier deals with
which?

CS 480 — Spring 2009

Pacific University

In Action

 QOur Lexer will return (token, value) tuples
sum = 2 + sum - num--,;

Lexeme Token Value

CS 480 — Spring 2009

Pacific University

Error Handling

» What errors can arise during lexing?

fi(vals == nums[i]) ;

// what else makes this hard to parse?
if (f£fi == 9) ;

if while (x == 0);

CS 480 — Spring 2009

Pacific University

Error Handling

Continue processing until a valid token is found
Delete extraneous characters

Insert missing characters
Replace what appears to be incorrect characters
If it makes sense, transpose two adjacent characters

CS 480 — Spring 2009

Pacific University

What errors can the lexer produce?

Character Not In Grammar.
Missing Semicolon.
Missing Right Parenthesis.
Missing Left Parenthesis.
Missing Right Brace.
Missing Left Brace.
Missing Right Bracket.
Missing Left Bracket.
Identifier Expected.
Constant Expected.

Main Declaration Expected.

Invalid Declaration.
Read Past EOF.

Bad Expression.
Duplicate Identifier.
Undeclared Identifier.

Identifier Not Right Type.
Undeclared Array.
Mismatched Parameters.
Unary Type Mismatch.
Addop Type Mismatch.
Mulop Type Mismatch.
Dereference Type Mismatch.
Assign Type Mismatch.
Invalid Identifier.
Constant Too Long.

Bad Statement.

Extra Tokens.

No More Tokens.

Cannot Open File.

Out Of Memory.

CS 480 — Spring 2009 Missing Comma.
Undectaredtuanettor——— pacitic University

Lexer Implementation

« We might use (1)lex

« Write the code in a high level language using
the I/O provided by the language

« Write the code in assembly managing the I/O
explicitly

CS 480 — Spring 2009

Pacific University

% { (f)lex

/* sample demonstration */

/* identify is and are as verbs */

s}

[\t 1+ /* ignore whitespace */

is |

are { printf("%s: is a verb", yytext);

return (VERB) ; }
[a-2A-Z]+ { printf("%s: is not a verb", yytext); }

o\°
o\°

main()

yylex();

CS 480 — Spring 2009

Pacific University

	CS310
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

