Chapter 9 Virtual Memory

Images from Silberschatz

1

Virtual Memory

- Processes do not need to be completely in memory to execute
 - data
 - code —
 - data set can be larger than physical memory
- **Demand Paging**

Process View

Sharing Memory

Demand Paging

- Load pages as they are needed
 - lazy swapping (pager)
 - less I/O (up front)
 - less memory used at once
 - faster response
 - more processes fit into memory
 - mark pages as in memory or not (similar to valid/invalid)

New Page Table

Hardware Support

- Accessing an out-of-memory page causes a page fault trap
- OS handles this and brings the page into memory
- Also must check for invalid address
- Pure Demand Paging
 - Locality of reference
- Page fault may occur anywhere in an instruction
 - may backup and rerun something

Page Fault!

Copy-on-Write

• When do processes share pages?

- Only copy (create a new page) when one process writes to a shared page
 - faster

vfork()/exec()

Page Replacement

Pacific University

- Remove page from physical memory to make room
 - swap out a process/frame
- Two I/O operations
 - out then in
 - time consuming
 - page may still be on disk
 - dirty bit!

10

Algorithms

- Goal: Few page faults
- Frame Allocation

• Page Replacement

FIFO

- First In, First Out
- Ref String: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

- Belady's Anomaly:
 - more frames, more faults

1	1	4	5			
2	2	1	3	9 page faults		
3	3	2	4			
1	1	5	4			
1 2	1 2	5 1	4 5	10 page faults		
1 2 3	1 2 3	5 1 2	4 5	10 page faults		

Optimal Replacement Algo

- "Replace the page that will not be used for the longest period of time"
- Problems with this?

Approximate Optimal

• LRU

- LRU-Approximate
 - reference bit
 - may be also FIFO (second chance)
- LRU-Additional-Reference -Bits
 - many (8?) bits
- Enhanced Second Chance
 - referenced, modified bits

Counting Algorithms

- Count references per page
 - rarely used in real world
- Least Frequently Used

Most Frequently Used

Global vs Local

• Global replacement

• Local replacement

04/27/12	Pacific University

Thrashing

- Furiously swapping pages in and out
- Problems?

- CPU utilization is low, so OS adds more processes
 - more frames are used
- Poor data layout in your application

