Chapter 6

Synchronization

Images from Silberschatz

CS460
04/17/08 Pacific University

Processes

* Multiple processes accessing the same data
- Could be threads

 Producer/Consumer
- Section 3.4.1

CS460
04/17/08 Pacific University

while (true) {

/* produce an item and put in nextProduced */
while (count == BUFFER_SIZE)
- // do nothing
buffer [in] = nextProduced;
in=(in+1) % BUFFER_SIZE;

count++;
} |
while (true) {
while (count == Q)
- // do nothing
nextConsumed = buffer[out];
 What's the problem? out = (out + 1) % BUFFER_SIZE:

count--;

/* consume the item in nextConsumed

CS460
04/17/08 Pacific University

Race Condition

e How can count++ be executed?

e How can count-- be execute?

Why is this a problem?

- Why else is it a problem?

Atomic

CS460
04/17/08 Pacific University

Critical Section Problem

Critical Section

Mutual Exclusion

Progress

Bounded Waiting

Preemptive vs non-preemptive kernels

CS460
04/17/08 Pacific University

Peterson's Solution

e Assumptions:

while (true) {
flag[i] = TRUE;
turn = j;
while (flag[j] && turn == j);
CRITICAL SECTION

* Are the 3 properties preserved? flag[i] = FALSE;

REMAINDER SECTION

 How might we implement this?

- Think about system calls....

CS460
04/17/08 Pacific University

— Machine instructions

boolean TestAndSet (boolean *target)

{

Hardware support

* Implement this on the processor

boolean rv = *target;
*target = TRUE;
return rv:

while (true) {
while (TestAndSet (&lock))
- /* do nothing
/] critical section

lock = FALSE;

// remainder section

04/17/08

CS460
Pacific University

More hardware solutions

void Swap (boolean *a, boolean *b)

{
boolean temp = *a;
*a — *b,
b = temp:
while (true) {)

key = TRUE;
while (key == TRUE)
Swap (&lock, &key);
/[critical section

lock = FALSE;

I/ remainder section

}

CS460
04/17/08 Pacific University 8

Semaphore

° Countlng wait (S) {
o Binary while S <=0
. // no-op
- 77
S
_ ;
° Spln lock signal (S) {
S++;
;
* Problems?
- solutions? Semaphore S; // initialized to 1

wait (S);
Critical Section

« What can we say about Critical signal (S);

Sections?

CS460
04/17/08 Pacific University

Deadlock & Starvation

04/17/08

CS460
Pacific University

10

Classic Problems of Synchronization

Used to test new synchronization methods

Bounded Buffer
Readers-Writers

Dining Philosophers

- or, why you should never eat at a table full of computer scientists

04/17/08

CS460
Pacific University

11

Dining Philosophers

04/17/08

12

Dining Philosophers Solution

« Using semaphores

* Problems?

e Solutions?

while (true) {
wait (chopstick][i]);
wait (chopStick[(i + 1) % 9]);
/I eat

signal (chopstick]i]);

signal (chopstick[(i+ 1) % 5]);

/I think

04/17/08

CS460
Pacific University

13

Problems with Semaphores
« What can you think of?

 Why are these problems bad?
- Really, really, really bad?

 Evil even.

CS460
04/17/08 Pacific University

14

Monitors

* High level coding practice

- design pattern

- Sometimes part of the language

« Java: synchronized
o C#: Monitor class
« C++ .NET: Monitor class

- Sometimes you code it yourself
« C
* Only one process can be in a
monitor at a time

 Why is this useful?

monitor monitor-name

{
// shared variable declarations
procedure P1 (...){.... }
procedure Pn (...) {...... }
Initialization code (....){ ... }
}
;

CS460
04/17/08 Pacific University

15

Log-Based Recovery

* Ensure atomicity

- |In case of a crash
— Databases

- Long running computations

 \Weather simulations
 Nuclear reaction simulations

* Write-ahead logging
- Start
- Commit
- Undo
- Redo

* Problems?

CS460
04/17/08 Pacific University

Checkpoints

04/17/08

CS460
Pacific University

17

