
04/17/08
CS460

Pacific University 1

Chapter 6
Synchronization

Images from Silberschatz

04/17/08
CS460

Pacific University 2

Processes
● Multiple processes accessing the same data

– Could be threads

● Producer/Consumer

– Section 3.4.1

04/17/08
CS460

Pacific University 3

● What's the problem?

04/17/08
CS460

Pacific University 4

Race Condition
● How can count++ be executed?

● How can count-- be execute?

● Why is this a problem?

– Why else is it a problem?

● Atomic

04/17/08
CS460

Pacific University 5

Critical Section Problem
● Critical Section

● Mutual Exclusion

● Progress

● Bounded Waiting

● Preemptive vs non-preemptive kernels

04/17/08
CS460

Pacific University 6

Peterson's Solution
● Assumptions:

● Are the 3 properties preserved?

● How might we implement this?

– Think about system calls....

04/17/08
CS460

Pacific University 7

Hardware support
● Implement this on the processor

– Machine instructions

04/17/08
CS460

Pacific University 8

More hardware solutions

04/17/08
CS460

Pacific University 9

Semaphore
● Counting

● Binary

– ??

● Spin lock

● Problems?

– solutions?

● What can we say about Critical
Sections?

04/17/08
CS460

Pacific University 10

Deadlock & Starvation

04/17/08
CS460

Pacific University 11

Classic Problems of Synchronization
● Used to test new synchronization methods

● Bounded Buffer

● Readers-Writers

● Dining Philosophers
– or, why you should never eat at a table full of computer scientists

04/17/08
CS460

Pacific University 12

Dining Philosophers

04/17/08
CS460

Pacific University 13

Dining Philosophers Solution
● Using semaphores

● Problems?

● Solutions?

04/17/08
CS460

Pacific University 14

Problems with Semaphores
● What can you think of?

● Why are these problems bad?

– Really, really, really bad?

● Evil even.

04/17/08
CS460

Pacific University 15

Monitors
● High level coding practice

– design pattern

– Sometimes part of the language

● Java: synchronized
● C#: Monitor class
● C++ .NET: Monitor class

– Sometimes you code it yourself

● C

● Only one process can be in a
monitor at a time

● Why is this useful?

04/17/08
CS460

Pacific University 16

Log-Based Recovery
● Ensure atomicity

– In case of a crash

– Databases

– Long running computations

● Weather simulations
● Nuclear reaction simulations

● Write-ahead logging

– Start

– Commit

– Undo

– Redo

● Problems?

04/17/08
CS460

Pacific University 17

Checkpoints

