Query Evaluation & Optimization

April 12, 2013

Chapter 12

Catalog

- Meta data about the tables
 - names
 - column name, domain
 - indexes
 - size
- Cardinality or NTuples(R)
- Size or NPages(R)
- Index Cardinality or NKeys(I)
- Index Size or INPages(I)
- Index Height or IHeight(I)
- Index Range or ILow(I)/IHigh(I)

Setup

- Sailors(sid, sname, rating, age)
- Reserves(<u>sid, bid, day</u>, rname)
- Reserves: 40 bytes per tuple
 - NPages(Reserves) = 1000
 - NTuples(Reserves) = 100000
 - NKeys(<rname, bid, sid>) = 100
- Sailors: 50 bytes per tuple
 - NPages(Sailors) = 500
 - NTuples(Sailors) = 40000

Simple Heuristics

• Indexing

Goal: Low **cost**

• Iteration

• Partitioning

Access Path

• How to retrieve a tuple from a table

• File Scan

OR

• index plus matching selection condition

Matching

- Conjunctive Normal Form
 - may only match subset
 - primary conjuncts
- Hash index

• Tree index

So you would guess InnoDB uses what types of indexes?

• Why?

Cost

- Selectivity of access path
 - most selective
 - reduction factor
- Index File

• Data File

Operations

• Selection

- Projection
 - remove duplicates
 - SELECT DISTINCT(FName) FROM Students
 - SELECT COUNT(DISTINCT(FName)) FROM Students
 - partitioning: scan then sort
 - with index
 - with clustered index

Operations, cont p 403

- Join
- index nested loops join
- Reserves.sid=Sailors.sid
- how many I/O operations are needed?
- What do we know about Reserves, Sailors, sid?

- Reserves.rname = Sailors.sname
 - how many I/O operations are needed?
 - sort-merge join

Evaluation Plans p406

SELECT S.sname FROM Reserves as R, Sailors as S WHERE R.sid=S.sid AND R.bid=100 AND S.rating > 5

- with hash indexes on bid another hash index on Sailors.sid
- what if we had a tree index on rating?