Indexing & Storage Engines

April 10, 2013

Chapter 8

CS445
03/29/13 Pacific University

Join

Professors
E-R Diagram?

ProflD FName LName StatusID

1 D R 3

2 S K 2

3 C W 1 JobStatus
StatusID Name PayBonus | Tenure
1 Professor | 10000 Yes
2 Associate | 1000 Yes
3 Assistant |0 No

SELECT *

FROM Professors
WHERE StatusID=3;

SELECT *
FROM JobStatus
WHERE PayBonus > 100;

SELECT ProfID, LName, Name, Tenure
FROM Professors, JobStatus
WHERE Professors.StatusiD=JobStatus.StatusID;

What happens? Primary Key? Index?

Pacific University

CS445

Join

FixInducing
- E-R Diagram?

BuglD FilelD TransID

1 1 100

2 1 100

S 2 150 SourceCodeRevisions
FilelD TransID | FileText Author
1 100 #include ... | Chadd

Files .

1 150 #include ... | Doug

FileID |FileName | Directory 2 150 [rrxERRRx Chadd

1 main.c src/driver SELECT *

2 other.c src/util FROM FixInducing as FI, SourceCodeRevisions as S

WHERE Fl.TransID=S.TransID
3 simple.c src/datas...

SELECT BuglID, Fl.FilelD, FI.TransID, Author, FileName
FROM FixInducing as Fl, SourceCodeRevisions as S, Files as F
WHERE FI.FilelD=S.FilelD and

FI.TransID=S.TransID and

F.FileID=S.FilelD

What happens? Primary Key? Index?

CS445

Pacific University

Hardware Basics

Disk access time: 10 msecs

Memory access time: 60 nanoseconds

- faster than disk access by 777

We can run many instructions in 10 msecs!

What does it cost to find a row?

CS445
03/29/13 Pacific University

Storage Engine

e How Is the data stored?

- file format

- Indexes
- transactions/concurrency

 MySQL ships with a number of storage engines

- MyISAM
- InnoDB
- plug-ins can add support for others

mysql> CREATE TABLE Actors
(ActorID INT NOT NULL AUTO_INCREMENT,

LastName VARBINARY(50),
FirstName VARBINARY(50) NOT NULL,

PRIMARY KEY(ActorID)
) ENGINE=InnoDB;

CS445
Pacific University

03/29/13

INnNnoDB Transactions

® Atomic - all changes are either committed as a
group, or all are rolled back as a group

® Consistent - transactions operate on a consistent
view of the data, leaving the data in a
consistent state (by transaction’s end)

® I solated - each transaction “thinks” 1t is
running by itself - effects of other
transactions are invisible until it commits

® Durable - once committed, all changes persist,

even If there are system failures
http://www.innodb.com/wp/wp-content/uploads/2008/04/intro-to-innodb-at-the-2008-mysql-uc-final. pdf

INNOBASE 6

Indexing

mysql> CREATE TABLE Actors
(ActorID INT NOT NULL AUTO_INCREMENT,

LastName VARBINARY(50),

FirstName VARBINARY(50) NOT NULL,
Gender ENUM('Male', 'Female') NOT NULL,
PRIMARY KEY(ActorID),

INDEX(Gender)

) ENGINE=InnoDB;

« Common access methods
- Scan
- Equality
- Range

http://www.innodb.com/products/innodb/info/
Intro to InnoDB at the 2008 MySQL User Conference

CS445
03/29/13 Pacific University 7

Database Files

« Data File - data from one table

- Collection of file pages

« Each page contains a number of data records

* InnoDB: 16KB page size
 One disk access to retrieve each page

- Data records

e 1 record =1 row in a table

« Each data record has a record id (rid) <pageid, slotid>
e Can be used to retrieve the record

 |Index File

Assume each index is tied
to exactly 1 column in the
table

- Auxiliary file that matches database indexes to rids

- data entry

03/29/13

CS445
Pacific University

Index Files
 Three types:

1 The data entry is the database row
* No auxiliary file
« Called an indexed file
2 The data entry is a <db index, rid> pair

3 The data entry is a <db index, rid-list> pair

 For any table, you can have one indexed file and
many of 2 or 3

 Primary & Secondary indexes

CS445
03/29/13 Pacific University

Clustered Indexes

e Data records stored in near sorted order

- Records in a page are nearly ordered

 Generally, only option 1 is clustered

- Expensive to keep a file sorted

- often gaps are kept in the file to allow easy (sorted)
insertion

« Why would this be useful?

CS445
03/29/13 Pacific University

10

Index Data Structures

« Hash table

- Chapter 11
- hash(ActorlD) = PagelD

e Jrees

- Chapter 10
- B+ Trees

CS445
03/29/13 Pacific University

11

+ What is the O() for the access time of a hadHashing
table?

 Example: Page 280, Figure 8.2

280 CHAPTER §
|| Smith, 44, 3000
h(age)=00 _ -7 3000 |&
gl Jones, 40, 6003 ~~_ h(sal)=00
L ol {| Tracy, 44, 5004 9000 e N
o e / 5004 ke ~ =3
S __h@gey=01 A~ 5004 i
Ashby, 25, 3000 | i
TR Basu, 33, 4003 |- P
= Bristow, 29, 2007 |- 4003)=""" h(sah=11
‘ ey N~ 2007
h(age)=10 ">+ % 6003
Cass, 50, 5004
o ——T]" 6003
Daniels, 22, 6003 |-

File of <sal, rid> pairs
Employees file hashed on age hashed on sal

. d T
Ramakrishnan, Gehrke, Database Management Systems, 3™ edition
Figure 8.2 Index-Organized File Hashed on age, with Auxiliary Index on sal

03/29/13 Facitnc university 12

Trees

« Let's review Binary Search Trees
- fan-out?
- O() for finding a value in a BST?
- Why?
- What problems do BSTs have?

CS445
03/29/13 Pacific University

B+ Tree
e B+ Tree

- rebalancing tree!
 all paths from the root to any leaf are the same length

- B+ tree of order b has between (b/2)+1 and b keys per node
» except the root, between 2 and b keys

- all data stored at the leaf nodes
e (B trees can store data in any node)

« Example: page 281, Figure 8.3

CS445
03/29/13 Pacific University 14

Storage and Indexing ' 281

Start search: —____

[12| 78]
age<l2 age>=78
12<=age<78
YA
3 9 191 | 56 86],|94] |

1 / | PR TN

° o o o e e o o o o o e o o e o o
e o o e © ¢ ® @ \ :
~ LEAF LEVEL L1 / v L2 L3
Daniels, 22, 6003 Basu, 33, 4003 Smith, 44, 3000
S e o Ashby, 25, 3000 |~ Jones, 40, 6003 |~ Tracy, 44, 5004 o~ e o o
-~ | Bristow, 29, 2007 [| Cass, 50,5004 |~

Figure 8.3 Tree-Structured Index

Row 1 Row 2 Row 3 Row 4

Ramakrishnan, Gehrke, Database Management Systems, 3™ edition

CS445
03/29/13 Pacific University 15

B+ vs BST
e |If we have 100,000,000 records

- how long would it take to find a record with a BST?

- with a B+ Tree with fan-out 1007

« 100 is a typical fan-out for a B+ Tree in an index

- Each step in the tree may be a disk read

CS445
03/29/13 Pacific University

16

InnoDB Indexes - Primary

«Data rows are stored
in the B-tree leaf
nodes of a clustered

index

.B-tree is organized
by primary key or
non-null unique ke
of table, if defined;
else, an internal
column with 6-byte
ROW_ID is addea.

http://www.innodb.com/wp/wp-content/uploads/2009/05/innodb-file-formats-and-source-code-structure.pdf

INNOBASE

http://www.innodb.com/wp/wp-content/uploads/2007/04/innodb-overview-mysql-uc-2006-pdf.pdf

CS445

03/29/13 Pacific University 17

InnoDB Indexes - Secondary

PK values
001 = nnn

All‘A¥

B-tree leaf nodes, containing data

Secondary index B-
tree leaf nodes
contain, for each key
value, the primary
keys of the
corresponding rows,
used to access
clustering index to
obtain the data

Secondary Index

__INNOBASE

03/29/13 Pacific University 18

Resources
« http://en.oreilly.com/mysql2011/public/schedule/proceedings

- A Beginner's Guide to MariaDB
« community version of MySQL

- InnoDB: Status, Architecture, and Latest
Enhancements

* http://dev.mysqgl.com/doc/refman/5.5/en/innodb-index-
types.html

« http://dev.mysqgl.com/doc/refman/5.5/en/innodb-
Introduction-features.html

CS445
03/29/13 Pacific University 19

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

