Normalization

March 4, 2013

Chapter 19

Description

- A Real Estate agent wants to track offers made on properties.
- Each customer has a first and last name.
- Each property has a size, a zone type (residential, commercial, mixed, agricultural, timber) that determines the commission rate the agent receives for selling the property.

Problems

- Redundant Storage
- Update Anomalies
- Insertion Anomalies
- Deletion Anomolies

Solutions

- Get rid of redundancy!
- Identify functional dependencies
- Decompose Relations
- Must preserve semantics of relations (don't lose data)
- and by lose we may mean gain
- Must preserve all dependencies (constraints)

Function Dependency

- FD:
- Key
"If X -> Y holds, where Y is the set of all attributes, and there is no proper subset V of X such that V-> Y holds, then X is a key." ${ }^{1}$
- Superkey "If X-> Y holds, where Y is the set of all attributes, then X is a superkey." ${ }^{1}$
- A key is also a superkey ${ }^{1}$ http://www.imada.sdu.dk/~meer/dm26/ <no longer on the web>

Set of FDs

- Closure:
- F is a set of FDs for Relation R , closure of F is F^{+}
- Armstrong's Axioms:
- Reflexivity:
- Augmentation:
- Transitivity:
- Sound
- Complete

Additional Rules

- Union:
- Decomposition:
- Trivial FD
- X -> Y: all attributes in Y are in X
- \{SID, Major, Name\} -> \{ Major, Name \}

Normal Forms

- Boyce-Codd Normal Form (BCNF)
if there is an FD B->a in relation R then
$B->a$ is trivial $(a \in B)$
or
B is a superkey

From the Assignments:
FD \{ZoneName\} -> \{CommisionRate\}
Is Property in BCNF? Why or why not?

$3^{\text {rd }}$ Normal Form

if there is an FD B->a in relation R then
$B->a$ is trivial $(a \in B)$
or
B is a superkey
or
a is part of some key for R

- Possible violations: X -> A

Less restrictive (weaker) than BCNF. More practical, easier to preserve dependencies.

- X is a proper subset of some key K
- partial dependency
- X is not a proper subset of any key
- transitive dependency
- Everything in BCNF is in 3NF, everything not in 3NF is not in BCNF

Example 3NF

- BoatReservation (page 633 section 19.7.4)
(SailorID, BoatID, Date, CreditCard)
Key: (SailorID, BoatID, Date)
What type of relationship is this?
FD: \{SailorID\} -> \{CreditCard\}
What does this FD mean?

Is this in 3NF?

Is this in BCNF?

Example 3NF

- BoatReservation (page 619)
(SailorID, BoatID, Date, CreditCard)
Key: (SailorID, BoatID, Date)
FD: \{SailorID\} -> \{CreditCard\}

If we also have FD \{CreditCard\}-> \{SailorID\} what does this FD mean?

Is this in 3NF?

Is this in BCNF?

Decompositions

- To put a Relation R in BCNF:
- if R is not in BCNF then there must be at least one nontrivial FD B -> a such that B is not a superkey for R.
- Rewrite R as two schemas:
- (a U B)
- ($R-(a-B))$

Lossy Decomposition

S	P	D
s 1	p 1	d 1
s 2	p 2	d 2
s 3	p 1	d 3

Original Relation

S	P
s 1	p 1
s 2	p 2
s 3	p 1

Decomposed Relations

What data was lost?

Test to determine losslessness:
When R is decomposed into R 1 and R 2 , the attributes common to R1 and R2 must contain a key for either R1 or R2.
Formally:
F^{+}(of R) contains either FD R1 \cap R2 -> R1 or FD R1 \cap R2 ->R2

s	p	d
s 1	p 1	d 1
s 2	p 2	d 2
s 3	p 1	d 3
s 1	p 1	d 3
s 3	p 1	d 1

New Relation

Dependency Preservation

- "Allow us to enforce all FDs by examining a single relation instance" on each change of that relation instance
- Enforcing an FD across relations instances is expensive (if possible)
- If we decompose relation R down in to X and Y, the dependencies are preserved if $\left(F_{x} \cup F_{y}\right)^{+}=F^{+}$
- if we insert/delete/update into/from X or Y, we only need to examine the respective relation to check constraints

Decomposition

- Relation (C,S,J,D,P,V,P)
- FD: \{C\}->\{C,S,J,D,P,V\}, \{J,P\} ->\{C\}, \{S,D\} -> \{P\} What FDs can we infer?

What are keys?

SuperKeys?

What violates BCNF?

How do we decompose this?
What dependency is not preserved?
Page 621 (with edits for clarity)

Normalization

- The process of putting a schema in a particular normal form
- BCNF
- may not be a be able to create a dependency-preserving decomposition in BCNF
- 3NF
- can always create a lossless, dependency-preserving decomposition in 3NF

Normalization to BCNF

- If R is not in BCNF there must be at least one FD $X->Y$ such that Y is a single attribute and $X->Y$ violates BCNF.
- Decompose R into R-Y and XY
- Repeat while R is not in BCNF \{CSJDPQV\} FDs: \{JP\}->\{C\}; \{SD\}->\{P\}
- To preserve dependencies in BCNF, we may store some redundant information
- still can't always preserve dependencies, however \{CSP\} FDs: \{CS\}->\{P\}; \{P\}->\{C\}; KEYs: \{CS\}, \{PS\}

Normalization to 3NF

- We can use the method above to get a lossless decomposition in BCNF (hence it is in 3NF)
- This does not ensure dependency preservation
- we need to add that for a 3NF normalization
- Minimal Cover set for FDs
- given a set of FDs F, a minimal cover set of FDs G is
- $X->A$ is in G, and A is a single attribute
- F^{+}is equal to G^{+}
- if any FDs are deleted from G to form set $\mathrm{H}, \mathrm{H}^{+} \neq \mathrm{F}^{+}$

Minimal Cover, example

- FDs \{A\}-> \{B\} \{ABCD\}->\{E\} \{EF\}->\{G\} $\{E F\}->\{H\}\{A C D F\}->\{E G\}$
- Single attribute on Right:
- Minimize Left Side
- Remove redundant FDs

Decomposition into 3NF

- R is a relation with a set of FDs F where F is a minimal cover
- Produce a lossless decomposition as per BCNF
- produce relations $D=\left\{R_{1}, R_{2}, \ldots, R_{n}\right\}$
- Identify FDs in F not preserved in the closure of the FDs in $R_{1} \ldots R_{n}$
- for each non-preserved FD $\{X\}$-> $\{A\}$, add relation XA to D

3NF Synthesis

- Build a set of relations (tables) up from FDs
- start with a minimal cover set, F, of FDs
- If X-> A is in F, add the relation schema (table) XA
- Preserves all FDs
- May not be lossless
- add relation schema containing necessary attributes
- Polynomial time
- to find minimal set
- synthesis
- find a key (finding all keys is NP-Complete)
- testing if a schema is in 3NF is NP-Complete!

Example

- C -> CSJDPQV, JP->C, SD->P, J->S
- Minimal cover:
- Relation Schemas:

Multivalued Dependencies (19.8 page 634)

Key is CTB
Books are independent of Teacher, but dependent on Course.

However, C determines a set of B!
C->B is NOT an FD.
Is the table in BCNF?
There is redundancy.
R is a relation schema, X and Y are subsets of R.

course	teacher	book
P101	G	Mech
P101	G	Opt
P101	B	Mech
P101	B	Opt
M301	G	Mech
M301	G	Vec
M301	G	Geo

MVD X ->-> Y holds over R if, in every legal instance of r in R, each X value is associated with a set of Y values and this set if independent of the values in other attributes.

MVD -> Fourth Normal Form

- R is in 4NF if, for every MVD X->->Y that holds over R, one of the following is true:

$$
\begin{aligned}
& Y \subseteq X \text { or } X Y=R \\
& X \text { is a superkey }
\end{aligned}
$$

How is this similar to BCNF?

