CS 445 Introduction to Database Systems

MWF 11:45-12:50

Chadd Williams

Overview

- Practical introduction to databases
 - theory + hands on projects
- Topics
 - Relational Model
 - Relational Algebra/Calculus
 - Database Design
 - ER Diagrams
 - Structured Query Language (SQL)
 - Web accessible databases / Architecture / Model-View-Controller
 - Non-structured Data (NoSQL)
 - Cloud computing
- There will be a number of lab days for hands on work
 - approximately 6

What can you do over summer vacation?

http://opensourcebridge.org/

June 18-21, 2013

Portland, OR

Syllabus

- Database Management Systems (3rd), Ramakrishnan & Gehrke
- Grades:

Midterm 115%Midterm 215%Final20%Homework/Quizzes10%Database Projects40%

	First DB Assignment	Design Docs	8 pts
		MySQL DB	12 pts
✓	Big DB Assignment	Design Docs	25 pts
		MySQL DB	30 pts
		Web Interface	15 pts
		Presentations	10 pts

- Quizzes: frequent, unannounced, open-note quizzes will be given
- Late Policy: No late assignments accepted
- Grade Complaints: one paragraph summary of why the grade is wrong, within one week of receiving the graded material
- http://zeus.cs.pacificu.edu/chadd/cs445s13

Database Projects

- All database projects are to be done using MySQL 5.5 Community Server
 - http://dev.mysql.com/downloads/mysql/
 - http://www.apachefriends.org/en/index.html (XAMPP)
- First DB Assignment
 - Learn to use MySQL & SQL
 - Build graphical front end (Web/MS Access/OpenOffice)
- Big Database Project
 - You (and a friend) design, document, and implement a database
 - Build a web-based front end
 - We will discuss how to do this using PHP and the Apache webserver
 - 5 minute presentation of your design
 - 7-10 minute presentation of your final design and implementation

Introduction to Databases

• Read Chapter 1

- homework: page 23: 1.2, 1.6, page 52: 2.2 (1-5) (Due Feb 8)

- What's a database?
 - DBMS?
- Why do we use one?

Review Questions

at the end of each chapter are great exam study guides.

• Who uses one?

How do we model the data?

Basic Database Usage Scenario

More Complicated Database Usage Scenario

Why not just use a text file/file system/XML?

- Data Independence
- Efficient Data Access
- Data Integrity and Security
- Data Administration
- Concurrent Access/Crash Recovery
- Reduced Application Development Time

Storing data in the DB

- Data Models
- Semantic Data Model (high level)
 - Entity-Relationship (ER) Model
 - Entity:
 - Relationship:
- Relational Data Model (low level)

- Schema
- Constraints/Integrity

Relational Databases

- Well defined structure of data
 - schema

• Flexible queries

NoSQL databases schema

queries

CS445			
01/25/13	Pacific University	11	

What's inside a Relational database?

• Tables

Indexes/Keys

• Data

How do we access the data?

- Query Language
 - Structured Query Language (SQL)
 - What types of queries can we run?

What about multiple users?

• Transactions

• Concurrency

Dirty Details

• Figure 1.3 page 20

Sophisticated users, application programmers, DB administrators Unsophisticated users (customers, travel agents, etc.) SQL Interface **Application Front Ends** Web Forms shows command flow SQL COMMANDS shows interaction Parser Plan Executor Ouery Evaluation Optimizer **Operator Evaluator** Engine Files and Access Methods Transaction Manager Recovery Manager Buffer Manager Lock Manager Disk Space Manager DBMS Concurrency Control shows references **Index Files** System Catalog **Data Files** DATABASE

Figure 1.3 Architecture of a DBMS