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Introduction to MySQL 
and SQL Basics

Sep 16, 2011
Read Chapter 3!

http://dev.mysql.com/doc/refman/5.5/en/
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College Database E-R Diagram
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MySQL tasks

● start MySQL

– setup user passwords

● shutdown MySQL

● create database

● create table

– primary key

– index

– foreign key

● insert data

– source a file

● delete data

– drop

● query data

– where

– join

– group

– order

– subquery

http://dev.mysql.com/doc/refman/5.5/en/
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MySQL
● ssh to  gray.cs.pacificu.edu (64.59.233.246)

ssh gray.cs.pacificu.edu    (PuTTY on Windows)

[you@gray ~]# $ mysql -u PUNetID -p 

mysql> set password = PASSWORD('NEWPASSWORD');

mysql> show databases;

mysql> use PUNetID_test;
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MySQL Data types

● TINYINT/SMALLINT/INT/BIGINT  SIGNED/UNSIGNED

● BIT

● FLOAT/DOUBLE

● BOOLEAN

● CHAR / BINARY

● VARCHAR(###)    /    VARBINARY(###)

● DATE  /  TIME / DATETIME / TIMESTAMP

● [TINY|MEDIUM|LONG]TEXT

● [TINY|MEDIUM|LONG]BLOB

● ENUM 

● SET

http://dev.mysql.com/doc/refman/5.5/en/data-
types.html
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Create a Table

CREATE TABLE People (

        PersonID INT NOT NULL AUTO_INCREMENT,

        FName VARBINARY(50),

        LName VARBINARY(50),

        Login VARBINARY(20) NOT NULL,

        CONSTRAINT People_PersonID_PK 
 PRIMARY KEY (PersonID),

        CONSTRAINT People_Login_U UNIQUE (Login)

) Engine=InnoDB;

mysql> show tables;

mysql> show create table People;
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Insert

INSERT INTO People ( FName, LName, 
Login) VALUES ( "Chadd", 
"Williams","chadd"); 

INSERT INTO People ( FName, LName, 
Login) VALUES ( "Doug", "Ryan","ryand");

INSERT INTO People ( FName, LName, 
Login) VALUES ("Shereen", 
"Khoja","shereen");

mysql> SELECT * FROM People;
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MySQL

mysql> SELECT * FROM People WHERE PersonID > 2;

mysql> SELECT * FROM People WHERE LName = “Ryan”;

mysql> SELECT * FROM People WHERE FName like “%a%”;

mysql> SELECT FName, LName FROM People 
WHERE PersonID > 1;
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Create a table
● Create another table

CREATE TABLE Professors (
        ProfID INT NOT NULL,

        Rank ENUM ('Assistant', 'Associate',
'Full', 'Emeritus') NOT NULL,

        CONSTRAINT Professors_ProfID_PK 
PRIMARY KEY (ProfID)

) Engine=InnoDB;
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Constraints
 

 mysql> ALTER TABLE Professors 
ADD CONSTRAINT Professors_ProfID_FK  
FOREIGN KEY (ProfID) REFERENCES 
People(PersonID) ON DELETE CASCADE;
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MySQL
● Insert some data

INSERT INTO Professors (ProfID, Rank) VALUES 
(1, 'Assistant'); -- chadd

INSERT INTO Professors (ProfID, Rank) VALUES 
(2, 'Full'); -- doug

INSERT INTO Professors (ProfID, Rank) VALUES 
(3, 'Associate'); -- shereen
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Let's make this go faster
● Load data from a SQL script

This file is full of INSERT and CREATE statements.

mysql> source /tmp/CreateDatabase.sql;

Let's look at that file.
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Deleting Data
● Let's delete some data

mysql> SELECT * FROM People;

mysql> SELECT * FROM CurrentlyTeaching;

mysql> DELETE FROM People WHERE PersonID=1;

mysql> SELECT * FROM People;

mysql> SELECT * FROM CurrentlyTeaching;

mysql> SHOW TABLES;

mysql> DROP TABLE People;

mysql> source /tmp/CreateDatabase.sql;
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Queries
● What Courses have a MaxSize of greater than 5?

mysql> SELECT *
FROM Courses 
WHERE 
MaxSize > 5;
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Order By
● Let's sort the output

mysql> SELECT * 
FROM Courses 
ORDER BY MaxSize;

mysql> SELECT * 
FROM Courses 
ORDER BY MaxSize DESC ;

mysql> SELECT * 
FROM People 
ORDER BY LName, FName;
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Group By
● Aggregate selected rows

mysql> SELECT LName
FROM People ;

mysql> SELECT LName, COUNT(*) 
FROM People 
GROUP BY LName;

mysql> SELECT AVG(MaxSize) 
FROM Courses;

mysql> SELECT AVG(Grade) 
FROM CurrentlyEnrolled
GROUP BY CourseID;

● Other useful functions: AVG(), STDDEV(), MAX(), SUM() 
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Let's Query the Data
● List all the Full professors in our database 

(ProfID).

● List every student with a GPA less than 1.0

(StudentID)
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Joins
● List all the Full professors in our database 

(FName, LName).

mysql> SELECT FName, LName 
FROM People, Professors
WHERE 
People.PersonID=Professors.ProfID

  AND
Rank=”Full”;

● List every student with a GPA less than 1.0

(StudentID, FName, LName)
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Joins
● Inner Join

– matching records in each table

SELECT * FROM People, Students WHERE 
(People.PersonID=Students.StudentID);

● Outer Join

– all records in each table (maybe not matching)

– may produce NULL values for some columns

SELECT * FROM People LEFT JOIN Students ON 
(People.PersonID=Students.StudentID);
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Let's Query the Data
● List all the courses in our database taught by an Associate 

professor. (CourseID)  (CourseID, Title)

● How many courses are taught by each rank of professor?

● How many professors teach zero courses?
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Joins
● Three table joins, show all courses taught by Assistant Profs 

(Title, FName, LName)

mysql> SELECT * 
FROM Courses, CurrentlyTeaching, Professors
WHERE

 

and Rank = “Assistant”;
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Joins
● A join looks a one row at a time

● Some queries need more information

● Who is in a class with Bart Simpson?
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Subqueries● Who was in class with Bart Simpson?

mysql> SELECT * 
FROM Students, CurrentlyEnrolled, People
WHERE
(Students.StudentID=CurrentlyEnrolled.StudentID
) AND
EXISTS 
(

SELECT *
FROM CurrentlyEnrolled AS BSClass
WHERE 

  (CurrentlyEnrolled.CourseID=BSClass.CourseID)
AND
BSClass.StudentID=5 -- Bart Simpson

 ) AND (Students.StudentID = People.PersonID)
AND (FName != “Bart” or LName != “Simpson”);
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Subquries
● Who has the maximum grade in each class? (Fname, 

Lname, grade, class name)

– Does this require a subquery?
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Views● A View is a logical table backed up by a query

– Changes automatically when the results of the query change

mysql> CREATE VIEW CS150_VW AS 
SELECT LName, FName, Grade, StudentID
FROM Courses, CurrentlyEnrolled, People
WHERE 
Courses.CourseID=CurrentlyEnrolled.Cours
eID and People.PersonID=StudentID and 
Title like “CS150%”;

mysql> SELECT * FROM CS150_VW;

mysql> DELETE FROM People WHERE 
PersonID=5;

mysql> SELECT * FROM CS150_VW Order by Grade;

mysql> DROP VIEW CS150_VW;
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Exercise
● Rebuild CS150_VW

● Determine how closely a student's grade in CS150 
matches their GPA.  (1.0 = perfect match, 0.5 = Grade 
is half the GPA, 1.5 Grade is 50% better than GPA)

● GPA goes from 0.0 to 4.0, Grade goes from 0.0 to 100.0
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 Control Flow
IF( condition, trueValue, falseValue)

SELECT Title, IF( MaxSize > 50, 1, 0)

FROM  Courses;

IFNULL(Value, returnIfValueIsNULL)

SELECT IFNULL(Title, “ITISNULL”)

FROM  Courses;

There is also a case (switch) statement
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GROUP BY and HAVING
● Allows SQL to filter on calculated/aggregate values

● Similar to  WHERE

● must be last

SELECT StudentID, avg(Grade) as AvgGrade,
count(*) as NumberRows

FROM CurrentlyEnrolled

WHERE Grade > 20

GROUP BY StudentID

HAVING AvgSalary > 60 and NumberRows > 1;
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Limit – only show some results

SELECT StudentID, count(*) as Total
FROM WasIn 
GROUP BY StudentID
HAVING Total > 1
LIMIT 2; -- show only first two rows

LIMIT 2,4; -- skip the first two 
rows, then show the next 4

LIMIT 3; is equivalent to LIMIT 0, 3
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Backup Your Database!
@gray:~> mysqldump PUNetID_test -u PUNetID -p  > backup_test.sql

Database Name
Output file

To see what this file looks like:

@gray:~> cat  backup_test.sql  | less

Copy to Zeus for safe keeping!

@gray:~> scp backup_test.sql PUNetID@zeus:

Don't forget the colon!
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Practice
● List all Course titles and CourseID.  For each Course, 

display the CourseID if Chadd teaches it and “Not A Chadd 
Course” otherwise.

● Find all courses whose maximum and minimum grade is at 
least 50 points different.

● Display each student name, course title, and student's 
grade in that course and the string “passing” or “not 
passing” if the student is not passing the course.

● Find each course that does not contain a Simpson.

● Display all students whose grade for a class is above the 
average grade for that class.
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Explain
mysql> SHOW CREATE TABLE People;

mysql> SHOW CREATE TABLE CurrentlyTeaching;

mysql> EXPLAIN SELECT * FROM People, 
CurrentlyTeaching WHERE (PersonID=ProfID);

mysql> EXPLAIN SELECT * FROM People, 
CurrentlyTeaching WHERE (PersonID=ProfID)
AND FName like '%a%';

EXPLAIN

TYPE: system, const, eq_ref, ref, index, all

ROWS: number of rows scanned
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Indexes
mysql> USE chadd_test;

mysql> SHOW TABLE STATUS LIKE  'EnronVocab';

mysql> SHOW TABLE STATUS LIKE  'EnronWordCount';

mysql> SHOW CREATE TABLE EnronVocab;

mysql> SHOW CREATE TABLE EnronWordCount;

mysql> SHOW PROCESSLIST;

mysql> EXPLAIN SELECT WordCount FROM  
EnronWordCount WHERE DocID = ??;

mysql> EXPLAIN SELECT WordCount FROM  
EnronWordCount WHERE WordID = ??;

● 1 to 39861 DocID 

● 1 to 28102 WordID
http://archive.ics.uci.edu/ml/datasets/Bag+of+Words
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Practice
● How many students are in each class?

● For each class, what was the min, max, average grade ?

– do this with and without using the AVG() function.

● Who took a class with Bart Simpson and received a higer 
grade than Bart? Lower Grade?



09/23/11
CS445

Pacific University 35

INTO OUTFILE
● Save a query to a text file

SELECT StudenID, count(*) as Total
FROM CurrentlyEnrolled
GROUP BY StudentID
HAVING Total > 1
INTO OUTFILE '/tmp/PUNETID.txt';

-- writes data on the server

gray> scp /tmp/PUNETID.txt c@zeus:

mysql -u user -p -D database -e 
“select ... “ > outfile
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LOAD DATA INFILE

mysql> source /tmp/createTest.sql;

mysql> ALTER TABLE test DISABLE KEYS;
mysql> SET FOREIGN_KEY_CHECKS=0;

mysql> LOAD DATA INFILE '/tmp/test.txt' INTO 
TABLE test COLUMNS TERMINATED BY ',';

mysql> SET FOREIGN_KEY_CHECKS=1;
mysql> ALTER TABLE test ENABLE KEYS;

Query OK, 69679427 rows affected (21 min 34.26 sec)

● with a well tuned MySQL (innodb_buffer_pool_size, 
innodb_log_*)
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Triggers

CREATE TRIGGER name BEFORE INSERT ON table
  FOR EACH ROW BEGIN
    -- SQL Statements  or control flow (IF)

 INSERT INTO test2 SET a2 = NEW.a1;
  END
;

BEFORE | AFTER

INSERT | DELETE | UPDATE

Cannot stop an insert!

The row being inserted
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Trigger

CREATE TRIGGER name BEFORE INSERT ON table
  FOR EACH ROW BEGIN

    SIGNAL SQLSTATE '99991' 
SET MESSAGE_TEXT = 'ERROR MESSAGE';

  END
;

DROP TRIGGER name;
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Stored Procedures
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Control Flow
● CASE

● IF()

● IFNULL()

● NULLIF()
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Advanced SQL
● Control Flow Functions

– http://dev.mysql.com/doc/refman/5.5/en/control-flow-functions.html

● Trigger
– http://dev.mysql.com/doc/refman/5.5/en/create-trigger.html

● http://dev.mysql.com/doc/refman/5.5/en/select.html

– Having

– Limit

– into outfile

● load data
– http://dev.mysql.com/doc/refman/5.5/en/load-data.html

● Binary Data

● Stored Procedures
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