
09/23/11
CS445

Pacific University 1

Introduction to MySQL
and SQL Basics

Sep 16, 2011
Read Chapter 3!

http://dev.mysql.com/doc/refman/5.5/en/

09/23/11
CS445

Pacific University 2

College Database E-R Diagram

09/23/11
CS445

Pacific University 3

MySQL tasks

● start MySQL

– setup user passwords

● shutdown MySQL

● create database

● create table

– primary key

– index

– foreign key

● insert data

– source a file

● delete data

– drop

● query data

– where

– join

– group

– order

– subquery

http://dev.mysql.com/doc/refman/5.5/en/

09/23/11
CS445

Pacific University 4

MySQL
● ssh to gray.cs.pacificu.edu (64.59.233.246)

ssh gray.cs.pacificu.edu (PuTTY on Windows)

[you@gray ~]# $ mysql -u PUNetID -p

mysql> set password = PASSWORD('NEWPASSWORD');

mysql> show databases;

mysql> use PUNetID_test;

09/23/11
CS445

Pacific University 5

MySQL Data types

● TINYINT/SMALLINT/INT/BIGINT SIGNED/UNSIGNED

● BIT

● FLOAT/DOUBLE

● BOOLEAN

● CHAR / BINARY

● VARCHAR(###) / VARBINARY(###)

● DATE / TIME / DATETIME / TIMESTAMP

● [TINY|MEDIUM|LONG]TEXT

● [TINY|MEDIUM|LONG]BLOB

● ENUM

● SET

http://dev.mysql.com/doc/refman/5.5/en/data-
types.html

09/23/11
CS445

Pacific University 6

Create a Table

CREATE TABLE People (

 PersonID INT NOT NULL AUTO_INCREMENT,

 FName VARBINARY(50),

 LName VARBINARY(50),

 Login VARBINARY(20) NOT NULL,

 CONSTRAINT People_PersonID_PK
 PRIMARY KEY (PersonID),

 CONSTRAINT People_Login_U UNIQUE (Login)

) Engine=InnoDB;

mysql> show tables;

mysql> show create table People;

09/23/11
CS445

Pacific University 7

Insert

INSERT INTO People (FName, LName,
Login) VALUES ("Chadd",
"Williams","chadd");

INSERT INTO People (FName, LName,
Login) VALUES ("Doug", "Ryan","ryand");

INSERT INTO People (FName, LName,
Login) VALUES ("Shereen",
"Khoja","shereen");

mysql> SELECT * FROM People;

09/23/11
CS445

Pacific University 8

MySQL

mysql> SELECT * FROM People WHERE PersonID > 2;

mysql> SELECT * FROM People WHERE LName = “Ryan”;

mysql> SELECT * FROM People WHERE FName like “%a%”;

mysql> SELECT FName, LName FROM People
WHERE PersonID > 1;

09/23/11
CS445

Pacific University 9

Create a table
● Create another table

CREATE TABLE Professors (
 ProfID INT NOT NULL,

 Rank ENUM ('Assistant', 'Associate',
'Full', 'Emeritus') NOT NULL,

 CONSTRAINT Professors_ProfID_PK
PRIMARY KEY (ProfID)

) Engine=InnoDB;

09/23/11
CS445

Pacific University 10

Constraints

 mysql> ALTER TABLE Professors
ADD CONSTRAINT Professors_ProfID_FK
FOREIGN KEY (ProfID) REFERENCES
People(PersonID) ON DELETE CASCADE;

09/23/11
CS445

Pacific University 11

MySQL
● Insert some data

INSERT INTO Professors (ProfID, Rank) VALUES
(1, 'Assistant'); -- chadd

INSERT INTO Professors (ProfID, Rank) VALUES
(2, 'Full'); -- doug

INSERT INTO Professors (ProfID, Rank) VALUES
(3, 'Associate'); -- shereen

09/23/11
CS445

Pacific University 12

Let's make this go faster
● Load data from a SQL script

This file is full of INSERT and CREATE statements.

mysql> source /tmp/CreateDatabase.sql;

Let's look at that file.

09/23/11
CS445

Pacific University 13

Deleting Data
● Let's delete some data

mysql> SELECT * FROM People;

mysql> SELECT * FROM CurrentlyTeaching;

mysql> DELETE FROM People WHERE PersonID=1;

mysql> SELECT * FROM People;

mysql> SELECT * FROM CurrentlyTeaching;

mysql> SHOW TABLES;

mysql> DROP TABLE People;

mysql> source /tmp/CreateDatabase.sql;

09/23/11
CS445

Pacific University 14

Queries
● What Courses have a MaxSize of greater than 5?

mysql> SELECT *
FROM Courses
WHERE
MaxSize > 5;

09/23/11
CS445

Pacific University 15

Order By
● Let's sort the output

mysql> SELECT *
FROM Courses
ORDER BY MaxSize;

mysql> SELECT *
FROM Courses
ORDER BY MaxSize DESC ;

mysql> SELECT *
FROM People
ORDER BY LName, FName;

09/23/11
CS445

Pacific University 16

Group By
● Aggregate selected rows

mysql> SELECT LName
FROM People ;

mysql> SELECT LName, COUNT(*)
FROM People
GROUP BY LName;

mysql> SELECT AVG(MaxSize)
FROM Courses;

mysql> SELECT AVG(Grade)
FROM CurrentlyEnrolled
GROUP BY CourseID;

● Other useful functions: AVG(), STDDEV(), MAX(), SUM()

09/23/11
CS445

Pacific University 17

Let's Query the Data
● List all the Full professors in our database

(ProfID).

● List every student with a GPA less than 1.0

(StudentID)

09/23/11
CS445

Pacific University 18

Joins
● List all the Full professors in our database

(FName, LName).

mysql> SELECT FName, LName
FROM People, Professors
WHERE
People.PersonID=Professors.ProfID

 AND
Rank=”Full”;

● List every student with a GPA less than 1.0

(StudentID, FName, LName)

09/23/11
CS445

Pacific University 19

Joins
● Inner Join

– matching records in each table

SELECT * FROM People, Students WHERE
(People.PersonID=Students.StudentID);

● Outer Join

– all records in each table (maybe not matching)

– may produce NULL values for some columns

SELECT * FROM People LEFT JOIN Students ON
(People.PersonID=Students.StudentID);

09/23/11
CS445

Pacific University 20

Let's Query the Data
● List all the courses in our database taught by an Associate

professor. (CourseID) (CourseID, Title)

● How many courses are taught by each rank of professor?

● How many professors teach zero courses?

09/23/11
CS445

Pacific University 21

Joins
● Three table joins, show all courses taught by Assistant Profs

(Title, FName, LName)

mysql> SELECT *
FROM Courses, CurrentlyTeaching, Professors
WHERE

and Rank = “Assistant”;

09/23/11
CS445

Pacific University 22

Joins
● A join looks a one row at a time

● Some queries need more information

● Who is in a class with Bart Simpson?

09/23/11
CS445

Pacific University 23

Subqueries● Who was in class with Bart Simpson?

mysql> SELECT *
FROM Students, CurrentlyEnrolled, People
WHERE
(Students.StudentID=CurrentlyEnrolled.StudentID
) AND
EXISTS
(

SELECT *
FROM CurrentlyEnrolled AS BSClass
WHERE

 (CurrentlyEnrolled.CourseID=BSClass.CourseID)
AND
BSClass.StudentID=5 -- Bart Simpson

) AND (Students.StudentID = People.PersonID)
AND (FName != “Bart” or LName != “Simpson”);

09/23/11
CS445

Pacific University 24

Subquries
● Who has the maximum grade in each class? (Fname,

Lname, grade, class name)

– Does this require a subquery?

09/23/11
CS445

Pacific University 25

Views● A View is a logical table backed up by a query

– Changes automatically when the results of the query change

mysql> CREATE VIEW CS150_VW AS
SELECT LName, FName, Grade, StudentID
FROM Courses, CurrentlyEnrolled, People
WHERE
Courses.CourseID=CurrentlyEnrolled.Cours
eID and People.PersonID=StudentID and
Title like “CS150%”;

mysql> SELECT * FROM CS150_VW;

mysql> DELETE FROM People WHERE
PersonID=5;

mysql> SELECT * FROM CS150_VW Order by Grade;

mysql> DROP VIEW CS150_VW;

09/23/11
CS445

Pacific University 26

Exercise
● Rebuild CS150_VW

● Determine how closely a student's grade in CS150
matches their GPA. (1.0 = perfect match, 0.5 = Grade
is half the GPA, 1.5 Grade is 50% better than GPA)

● GPA goes from 0.0 to 4.0, Grade goes from 0.0 to 100.0

09/23/11
CS445

Pacific University 27

 Control Flow
IF(condition, trueValue, falseValue)

SELECT Title, IF(MaxSize > 50, 1, 0)

FROM Courses;

IFNULL(Value, returnIfValueIsNULL)

SELECT IFNULL(Title, “ITISNULL”)

FROM Courses;

There is also a case (switch) statement

09/23/11
CS445

Pacific University 28

GROUP BY and HAVING
● Allows SQL to filter on calculated/aggregate values

● Similar to WHERE

● must be last

SELECT StudentID, avg(Grade) as AvgGrade,
count(*) as NumberRows

FROM CurrentlyEnrolled

WHERE Grade > 20

GROUP BY StudentID

HAVING AvgSalary > 60 and NumberRows > 1;

09/23/11
CS445

Pacific University 29

Limit – only show some results

SELECT StudentID, count(*) as Total
FROM WasIn
GROUP BY StudentID
HAVING Total > 1
LIMIT 2; -- show only first two rows

LIMIT 2,4; -- skip the first two
rows, then show the next 4

LIMIT 3; is equivalent to LIMIT 0, 3

09/23/11
CS445

Pacific University 30

Backup Your Database!
@gray:~> mysqldump PUNetID_test -u PUNetID -p > backup_test.sql

Database Name
Output file

To see what this file looks like:

@gray:~> cat backup_test.sql | less

Copy to Zeus for safe keeping!

@gray:~> scp backup_test.sql PUNetID@zeus:

Don't forget the colon!

09/23/11
CS445

Pacific University 31

Practice
● List all Course titles and CourseID. For each Course,

display the CourseID if Chadd teaches it and “Not A Chadd
Course” otherwise.

● Find all courses whose maximum and minimum grade is at
least 50 points different.

● Display each student name, course title, and student's
grade in that course and the string “passing” or “not
passing” if the student is not passing the course.

● Find each course that does not contain a Simpson.

● Display all students whose grade for a class is above the
average grade for that class.

09/23/11
CS445

Pacific University 32

Explain
mysql> SHOW CREATE TABLE People;

mysql> SHOW CREATE TABLE CurrentlyTeaching;

mysql> EXPLAIN SELECT * FROM People,
CurrentlyTeaching WHERE (PersonID=ProfID);

mysql> EXPLAIN SELECT * FROM People,
CurrentlyTeaching WHERE (PersonID=ProfID)
AND FName like '%a%';

EXPLAIN

TYPE: system, const, eq_ref, ref, index, all

ROWS: number of rows scanned

09/23/11
CS445

Pacific University 33

Indexes
mysql> USE chadd_test;

mysql> SHOW TABLE STATUS LIKE 'EnronVocab';

mysql> SHOW TABLE STATUS LIKE 'EnronWordCount';

mysql> SHOW CREATE TABLE EnronVocab;

mysql> SHOW CREATE TABLE EnronWordCount;

mysql> SHOW PROCESSLIST;

mysql> EXPLAIN SELECT WordCount FROM
EnronWordCount WHERE DocID = ??;

mysql> EXPLAIN SELECT WordCount FROM
EnronWordCount WHERE WordID = ??;

● 1 to 39861 DocID

● 1 to 28102 WordID
http://archive.ics.uci.edu/ml/datasets/Bag+of+Words

09/23/11
CS445

Pacific University 34

Practice
● How many students are in each class?

● For each class, what was the min, max, average grade ?

– do this with and without using the AVG() function.

● Who took a class with Bart Simpson and received a higer
grade than Bart? Lower Grade?

09/23/11
CS445

Pacific University 35

INTO OUTFILE
● Save a query to a text file

SELECT StudenID, count(*) as Total
FROM CurrentlyEnrolled
GROUP BY StudentID
HAVING Total > 1
INTO OUTFILE '/tmp/PUNETID.txt';

-- writes data on the server

gray> scp /tmp/PUNETID.txt c@zeus:

mysql -u user -p -D database -e
“select ... “ > outfile

09/23/11
CS445

Pacific University 36

LOAD DATA INFILE

mysql> source /tmp/createTest.sql;

mysql> ALTER TABLE test DISABLE KEYS;
mysql> SET FOREIGN_KEY_CHECKS=0;

mysql> LOAD DATA INFILE '/tmp/test.txt' INTO
TABLE test COLUMNS TERMINATED BY ',';

mysql> SET FOREIGN_KEY_CHECKS=1;
mysql> ALTER TABLE test ENABLE KEYS;

Query OK, 69679427 rows affected (21 min 34.26 sec)

● with a well tuned MySQL (innodb_buffer_pool_size,
innodb_log_*)

09/23/11
CS445

Pacific University 37

Triggers

CREATE TRIGGER name BEFORE INSERT ON table
 FOR EACH ROW BEGIN
 -- SQL Statements or control flow (IF)

 INSERT INTO test2 SET a2 = NEW.a1;
 END
;

BEFORE | AFTER

INSERT | DELETE | UPDATE

Cannot stop an insert!

The row being inserted

09/23/11
CS445

Pacific University 38

Trigger

CREATE TRIGGER name BEFORE INSERT ON table
 FOR EACH ROW BEGIN

 SIGNAL SQLSTATE '99991'
SET MESSAGE_TEXT = 'ERROR MESSAGE';

 END
;

DROP TRIGGER name;

09/23/11
CS445

Pacific University 39

Stored Procedures

09/23/11
CS445

Pacific University 40

Control Flow
● CASE

● IF()

● IFNULL()

● NULLIF()

09/23/11
CS445

Pacific University 41

Advanced SQL
● Control Flow Functions

– http://dev.mysql.com/doc/refman/5.5/en/control-flow-functions.html

● Trigger
– http://dev.mysql.com/doc/refman/5.5/en/create-trigger.html

● http://dev.mysql.com/doc/refman/5.5/en/select.html

– Having

– Limit

– into outfile

● load data
– http://dev.mysql.com/doc/refman/5.5/en/load-data.html

● Binary Data

● Stored Procedures

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

