Relational Algebra Oct 19, 2011 Chapter 4 p 100-116

Queries

- How do we implement a query?
- How do we optimize a query?
- How to we talk about a query?

• What is the definition of Computer Science?

Algebra vs Calculus

- Relational Algebra
 - queries are composed of operators
 - step by step procedure for solving the query
 - relationally complete

• Relational Calculus (p 116-126)

- describe result of query without specifying how to compute

• Expressiveness: Algebra vs Calculus (section 4.4)

Queries: Defined

• Input and output are *relations*

• Queries work on *instances* of relations

- May refer to columns/fields by name or position
 - may need to rename columns/fields to avoid conflict

Queries

- Composed of operators
- Operators:
 - accept one to two relation instances
 - produce a relation instance
- Can *compose* queries

- Relational algebra expression
 - relation (produced by some operator(s))

Basic Operators

• Selection

• Projection

• Union/Intersection

• Cross-product

• Difference

Joins

• Conditional Joins

• Equijoin

• Natural Join

Others

• Division

• Renaming

	CS445	
10/19/11	Pacific University	

8

Examples: from the book

- Find the snames
 - who have reserved boat 103.
 - who have reserved any boat.
 - who have reserved a red boat.
 - who have reserved a red or green boat.
 - who have reserved a red and green boat.
 - who have reserved exactly 2 boats.
 - who have reserved at least 2 boats.
 - with age over 20 who have not reserved a red boat.
 - who reserved all boats.
- Find the colors of the boats reserved by Lubber.

19.8.1

10/19/11	CS445 Pacific University	10
10/19/11	Facilic Oniversity	10