Indexing & Storage Engines

Nov 11, 2009

Chapter 8

CS445
11/10/09 Pacific University

Hardware Basics

« Disk access time: 10 msecs

« Memory access time: 60 nanoseconds

- faster than disk access by 77?

« We can run many instructions in 10 msecs!

What does it cost to find a row?

CS445
11/10/09 Pacific University

Storage Engine

e How is the data stored?

- file format
- indexes

— transactions/concurrency

 MySQL ships with a number of storage engines
- MyISAM
- InnoDB

- plug-ins can add support for others
mysql> CREATE TABLE Actors
(ActorID INT NOT NULL AUTO_INCREMENT,
LastName VARBINARY (50),

FirstName VARBINARY (50) NOT NULL,
PRIMARY KEY (ActorID)
) ENGINE=InnoDB;

CS445

11/10/09 Pacific University 3

INnNnoDB Transactions

® Atomic - all changes are either committed as a
group, or all are rolled back as a group

® Consistent - transactions operate on a consistent
view of the data, leaving the data in a
consistent state (by transaction’s end)

@ I solated - each transaction “thinks” 1t is
running by itself - effects of other
transactions are invisible until it commits

® Durable - once committed, all changes persist,

even If there are system failures
http://www.innodb.com/wp/wp-content/uploads/2008/04/intro-to-innodb-at-the-2008-mysql-uc-final.pdf

INNOBASE 4

Indexing

mysql> CREATE TABLE Actors

(ActorID INT NOT NULL AUTO INCREMENT,
LastName VARBINARY (50),

FirstName VARBINARY (50) NOT NULL,
Gender ENUM('Male', 'Female') NOT NULL,
PRIMARY KEY (ActorID),

INDEX (Gender)

) ENGINE=InnoDB;

« Common access methods
- Scan
- Equality
- Range

http://www.innodb.com/products/innodb/info/
Intro to InnoDB at the 2008 MySQL User Conference

CS445
11/10/09 Pacific University 5

Database Files
 Data File - data from one table

- Collection of file pages

« Each page contains a number of data records
 InnoDB: 16KB page size
* One disk access to retrieve each page

- Data records

* 1 record = 1 row in a table
* Each data record has a record id (rid) <pageid, slotid>
« Can be used to retrieve the record

Assume each index is tied
to exactly 1 column in the
table

 Index File

- Auxiliary file that matches database indexes to rids
- data entry

CS445
11/10/09 Pacific University 6

Index Files
 Three types:

1 The data entry is the database row
* No auxiliary file
« Called an indexed file
2 The data entry is a <db index, rid> pair

3 The data entry is a <db index, rid-list> pair

* For any table, you can have one indexed file and
many of 2 or 3

* Primary & Secondary indexes

CS445
11/10/09 Pacific University

Clustered Indexes

« Data records stored in near sorted order

- Records in a page are nearly ordered

* Generally, only option 1 is clustered

- Expensive to keep a file sorted

- often gaps are kept in the file to allow easy (sorted)
Insertion

 Why would this be useful?

CS445
11/10/09 Pacific University

Index Data Structures

« Hash table

- Chapter 11
- hash(ActorID) = PagelD

e Trees

- Chapter 10
- B+ Trees

CS445
11/10/09 Pacific University

Hashing

« What is the O() for the access time of a hash table?

 Example: Page 280, Figure 8.2

280 CHAPTER §
h(age)=00 # Smith, 44, 3000
age)= P 3000 [+
> o Jones, 40, 6003 "~~~ _ h(sal)=00
e || Tracy, 44, 5004 400 M
L 5004 o
age 3 h(age) = 01 3 Ll
s —camalt e Yo TEEEE N 5004
@ “I| Ashby, 25, 3000 T
Sy Basu, 33, 4003 e
i . Bristow, 29, 2007 008 e h(sal)=11
i Mg 2007
h(age)=10 ~~ “ 6003
Cass, 50, 5004
. —T 6003
Daniels, 22, 6003 |-

File of <sal, rid> pairs
Employees file hashed on age hashed on sal

Ramakrishnan, Gehrke, Database Management Systems, 3" edition

Figure 8.2 Index-Organized File Hashed on age, with Auxiliary Index on sal
11/10/09

Trees

* Let's review Binary Search Trees
- fan-out?
- O() for finding a value in a BST?
- Why?
- What problems do BSTs have?

CS445
11/10/09 Pacific University

11

B+ Tree
e B+ Tree

- rebalancing tree!
 all paths from the root to any leaf are the same length
- B+ tree of order b has between (b/2)+1 and b keys per node

« except the root, between 2 and b keys
- all data stored at the leaf nodes

* (B trees can store data in any node)

 Example: page 281, Figure 8.3

CS445
11/10/09 Pacific University 12

Storage and Indexing ' 281

Start search: —____

[12],| 78]
age<lI2 age>=78
12<=age<78
T A
3 9 19],]56] | 86],|94] |

E / | PR TN

o o o o o o LRk e o o o o o e o o °
e o O o © o ® \ : ® o
~ LEAF LEVEL L1 / v L2 L3
Daniels, 22, 6003 Basu, 33, 4003 Smith, 44, 3000
S e o Ashby, 25, 3000 |~ Jones, 40, 6003 |~ Tracy, 44, 5004 o~ e o o
-~ | Bristow, 29, 2007 [.| . Cass,; 50,5004 - | o

Figure 8.3 Tree-Structured Index

Ramakrishnan, Gehrke, Database Management Systems, 3" edition

CS445
11/10/09 Pacific University 13

B+ vs BST
e |f we have 100,000,000 records

- how long would it take to find a record with a BST?

- with a B+ Tree with fan-out 1007

« 100 is a typical fan-out for a B+ Tree in an index

- Each step in the tree may be a disk read

CS445
11/10/09 Pacific University

14

InnoDB Data & Index Storage
]

secondary
index
leaf nodes

eData rows are stored in the B-tree leaf
nodes of a clustered index (aka
“index-organized table”)

.B-tree is organized by primarE/ ke
or non-null unique key of table, i
PK values defined; else, an internal column 6-
byte ROW_ID is added and used

001 500

500 800 oSecondary index B-tree leaf nodes

A “ A‘ XK contain, for each key ValUE, the

001 276 501 631 769 801 950

275 , 500 . 630 , 768 , 800 , 949 , xxx = primary keys of the Corresponding
rows, used to access clustering index
to obtain the data
KSYie86-
+ data for

corresponding eNote: long primary keys use a lot of
space in secondary indexes! Use
short or surrogate key ...

INNOBASE

http://www.innodb.com/wp/wp-content/uploads/2007/04/innodb-overview-mysql-uc-2006-pdf.pdf

CS445
11/10/09 Pacific University 15

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

