
Database Topic Due Tuesday! (1pm)

- Brief paragraph explaining the topic, goals, and users of the database (¹/₂ page at most)
- List of data (nouns) you will store
 - does not need to be complete
- Three queries that your users will want to answer
- Worth 5 points (of 25 points for Design Documents)
- Submit electronically (one text file)
 - via Turing (CS445Drop) DBTopic_PUNetID.txt
- If I have any concerns, I'll ask you to schedule an appointment with me

Normalization

Oct 4, 2007

Chapter 19

Students

SID	Name	Major	Email

Assignments

AID	Name	Туре	TotalPoints	%OfFinalGrade		

TurnedIn

SID	AID	PointsScored

Problems

• Redundant Storage

• Update Anomalies

• Insertion Anomalies

• Deletion Anomolies

Solutions

• Get rid of redundancy!

• Identify functional dependencies

- Decompose Relations
 - Must preserve semantics of relations (don't lose data)
 - and by lose we may mean gain
 - Must preserve all dependencies (constraints)

Function Dependency

• FD:

- Key
 "If X -> Y holds, where Y is the set of all attributes, and
 there is no proper subset V of X such that V -> Y holds,
 then X is a key." ¹
- Superkey

 "If X -> Y holds, where Y is the set of all attributes, then X is a superkey."¹
- A key is also a superkey

¹http://www.imada.sdu.dk/~meer/dm26/

Error on page 612, top paragraph

Set of FDs

• Closure:

- F is a set of FDs for Relation R, closure of F is F⁺
- Armstrong's Axioms:
 - Reflexivity:
 - Augmentation:
 - Transitivity:
 - Sound
 - Complete

Additional Rules

• Union:

• Decomposition:

- Trivial FD
 - X -> Y: all attributes in Y are in X
 - {SID, Major, Name} -> { Major, Name }

Normal Forms

• Boyce-Codd Normal Form (BCNF)

```
if there is an FD B->a in relation R then
B -> a is trivial (a \in B)
or
B is a superkey
```

From the Assignments:

```
FD {Type} -> {%ofFinalGrade}
```

Is Assignments in BCNF? Why or why not?

3rd Normal Form

if there is an FD B->a in relation R then B -> a is trivial (a ∈ B) or B is a superkey or a is part of some key for R

- Possible violations: X -> A
 - X is a proper subset of some key K
 - partial dependency
 - X is not a proper subset of any key
 - transitive dependency
- Everything in BCNF is in 3NF, everything not in 3NF is not in BCNF

Less restrictive (weaker) than BCNF. More practical, easier to preserve dependencies.

Example 3NF

- BoatReservation (page 619)

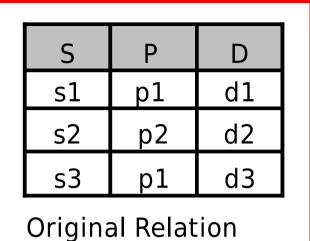
 (SailorID, BoatID, Date, CreditCard)
 Key: (SailorID, BoatID, Date)
 What type of relationship is this?
 FD: {SailorID} -> {CreditCard}
 What does this FD mean?
 - Is this in 3NF?
 - Is this in BCNF?

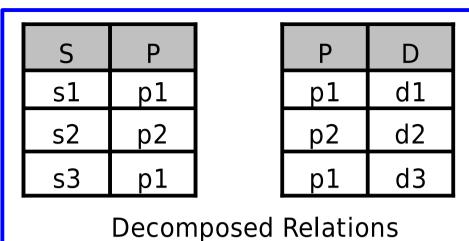
Example 3NF

- BoatReservation (page 619)

 (SailorID, BoatID, Date, CreditCard)
 Key: (SailorID, BoatID, Date)
 - FD: {SailorID} -> {CreditCard}

If we also have FD {CreditCard}->{SailorID} what does this FD mean?


Is this in 3NF?


Is this in BCNF?

Decompositions

- To put a Relation R in BCNF:
 - if R is not in BCNF then there must be at least one nontrivial
 FD a -> B such that a is not a superkey for R.
 - Rewrite R as two schemas:
 - (a U B)
 - (R (B a))

Lossy Decomposition

What data was lost?

Test to determine losslessness:

When R is decomposed into R1 and R2, the attributes common to R1 and R2 must contain a key for either R1 or R2.

Formally:

 F^+ (of R) contains either FD R1 \cap R2 -> R1 or FD R1 \cap R2 -> R2

S	р	d	
s1	p1	d1	
s2	p2	d2	
s3	p1	d3	
s1	p1	d3	
s3	p1	d1	

New Relation

page 620

Dependency Preservation

- "Allow us to enforce all FDs by examining a single relation instance" on each change of that relation instance
- Enforcing an FD across relations instances is expensive (if possible)
- If we decompose relation R down in to X and Y, the dependencies are preserved if $(F_x U F_y)^+ = F^+$
 - if we insert/delete/update into/from X or Y, we only need to examine the respective relation to check constraints

Decomposition

- Relation (C,S,J,D,P,V)
 - FD: {C}->{C,S,J,D,P,V}, {J,P} ->{C}, {S,D} -> {P} What FDs can we infer?

What are keys?

SuperKeys?

What violates BCNF?

How do we decompose this?

What dependency is not preserved?

Page 621 (with edits for clarity)

Normalization

- The process of putting a schema in a particular normal form
 - BCNF
 - may not be a be able to create a dependency-preserving decomposition in BCNF
 - 3NF
 - can always create a lossless, dependency-preserving decomposition in 3NF

Normalization to BCNF

- If R is not in BCNF there must be at least one FD X->Y such that Y is a single attribute and X->Y violates BCNF.
- Decompose R into R-Y and XA
- Repeat while R is not in BCNF
 {CSJDPQV} FDs: {JP}->{C}; {SD}->{P}

- To preserve dependencies in BCNF, we may store some redundant information
 - still can't always preserve dependencies, however {CSP} FDs: {CS}->{P} ; {P}->{C} ; KEYs: {CS}, {PS}

Normalization to 3NF

- We can use the method above to get a lossless decomposition in BCNF (hence it is in 3NF)
- This does not ensure dependency preservation
 - we need to add that for a 3NF normalization
- Minimal Cover set for FDs
 - given a set of FDs F, a minimal cover set of FDs G is
 - X->A is in G, and A is a single attribute
 - F⁺ is equal to G⁺
 - if any FDs are deleted from G to form set H, $H^+ \neq F^+$

Minimal Cover, example

- FDs {A}->{B} {ABCD}->{E} {EF}->{G} {EF}->{H} {ACDF}->{EG}
- Single attribute on Right:

• Minimize Left Side

• Remove redundant FDs

Decomposition into 3NF

- R is a relation with a set of FDs F where F is a minimal cover
- Produce a lossless decomposition as per BCNF

- produce relations $D = \{R_1, R_2, \dots, R_n\}$

- Identify FDs in F not preserved in the closure of the FDs in $R_{\rm 1}...R_{\rm n}$
 - for each non-preserved FD $\{X\} \rightarrow \{A\}$, add relation XA to D