Longest Common Subsequence (LCS)

Chapter 15 p 390

Longest Common Subsequence

- Problem: Let x₁x₂...x_m and y₁y₂...y_n be two sequences over some alphabet.
 - We assume they are strings of characters

 Find a longest common subsequence (LCS) of x₁x₂...x_m and y₁y₂...y_n

Many other string operations have the same basic structure.

Example

- $x_1x_2x_3x_4x_5x_6x_7x_8 = b a c b f f c b$
- $y_1y_2y_3y_4y_5y_6y_7y_8y_9 = d a b e a b f b c$

Longest Common Subsequence is:

A subsequence is a set of characters that appear in left- to-right order, *but not necessarily consecutively*.

Dynamic Programming

 LCS can be solved using dynamic programming

- 1. Characterize the structure of an optimal solution
- 2. Recursively define the value of an optimal solution
- 3. Compute the value of an optimal solution bottom-up
- 4. Construct an optimal solution from the computed information

Step 1

- Optimal substructure:
 If z = z₁z₂...z_p is a LCS of x₁x₂...x_m and y₁y₂...y_n, then
 At least one of these most hold
 - $x_m = y_n$, and $z_1 z_2 ... z_{p-1}$ is an LCS of $x_1 x_2 ... x_{m-1}$ and $y_1 y_2 ... y_{n-1}$,

- $x_m != y_n$, and $z_1 z_2 ... z_p$ is an LCS of $x_1 x_2 ... x_{m-1}$ and $y_1 y_2 ... y_n$,
- $x_m = y_n$, and $z_1 z_2 ... z_p$ is an LCS of $x_1 x_2 ... x_m$ and $y_1 y_2 ... y_{n-1}$.

Step 2: Recursive Solution

Let c_{ij} = length of LCS of $x_1x_2...x_i$ and $y = y_1y_2...y_j$.

$$c[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0, \\ 1 + c[i-1,j-1] & \text{if } x_i = y_j, \\ \max(c[i-1,j], c[i,j-1]) & \text{if } x_i \neq y_j. \end{cases}$$
$$b[i,j] = \begin{cases} \\ "\uparrow " & \text{if } x_i = y_j, \\ \\ "\uparrow " & \text{if } x_i \neq y_j \text{ and } c[i-1,j] \ge c[i,j-1], \\ \\ \text{if } x_i \neq y_j \text{ and } c[i-1,j] \le c[i,j-1], \\ \\ \text{if } x_i \neq y_j \text{ and } c[i-1,j] < c[i,j-1]. \end{cases}$$

We compute the c[i,j] and b[i,j] in order of increasing i+j, or alternatively in order of increasing *i*, and for a fixed *i*, in order of increasing *j*.

p 394
LCS-LENGTH(
$$X, Y, m, n$$
)
let $b[1 \dots m, 1 \dots n]$ and $c[0 \dots m, o \dots n]$ be new tables
for $i = 1$ to m
 $c[i, 0] = 0$
for $j = 0$ to n
 $c[0, j] = 0$
for $i = 1$ to m
if $x_i == y_j$
 $c[i, j] = c[i - 1, j - 1] + 1$
 $b[i, j] = " \ "$
else if $c[i - 1, j] \ge c[i, j - 1]$
 $c[i, j] = c[i - 1, j]$
 $b[i, j] = " \uparrow "$
else $c[i, j] = c[i, j - 1]$
 $b[i, j] = " \leftarrow "$
return c and b

Example

b,c matrices combined

\ j i \	0	1 d	2 a	3 b	4 e	5 a	6 b	7 f	8 b	9 C
0	0	0	0	0	0	0	0	0	0	0
1 b	0									
2 a	0									
3 c	0									
4 b	0									
5 f	0									
6 f	0									
7 c	0									
8 b	0									

PRINT-LCS(b, X, i, j)**if** i = 0 or j = 0return **if** $b[i, j] == " \ "$ PRINT-LCS(b, X, i - 1, j - 1)print x_i elseif $b[i, j] == ``\uparrow"$ PRINT-LCS(b, X, i - 1, j)else PRINT-LCS(b, X, i, j - 1)

String Similarity

- Edit Distance
 - Levenshtein
 - minimize changes

- Sequence Alignment
 - Needleman-Wunsch
 - maximize similarity
 - by giving weights to types of differences

http://xlinux.nist.gov/dads/HTML/Levenshtein.html

Edit Distance

- How many insertions, deletions, replacements will transform one string into another?
 - Damerau-Levenshtein includes transpositions as a special case the \rightarrow teh

$$\operatorname{lev}_{a,b}(i,j) = \begin{cases} \max(i,j) & \text{if } \min(i,j) = 0, \\ \left| \operatorname{lev}_{a,b}(i-1,j) + 1 \\ \operatorname{lev}_{a,b}(i,j-1) + 1 \\ \operatorname{lev}_{a,b}(i-1,j-1) + [a_i \neq b_j] \end{cases} & \text{otherwise.} \end{cases}$$

http://en.wikipedia.org/wiki/Levenshtein_distance

Levenshtein

Edit Distance Matrix

ATCGTT vs AGTTAC

i

		A	G	Т	Т	А	С
	0	1	2	3	4	5	6
А	1						
Т	2						
С	3						
G	4						
Т	5						
Т	6						

Backtracking deletion UP insertion LEFT match/mismatch DIAG

Sequence Alignment

- Similarity based on gaps and mismatches.
- Alignment
 - matched pairs from both strings
 - no crossings
- Generalized form of Levenshtein
 - additional parameters:
 - gap penalty, δ
 - mismatch cost ($\alpha_{x,y}$; $\alpha_{x,x} = 0$)

Kleinberg, Tardos, Algorithm Design, Pearson Addison Wesley, 2006, p 278

http://www.aw-bc.com/info/kleinberg/

Recurrence

- Two strings $x_1...x_m$ and $y_1...y_n$
- In an optimal alignment, *M*, at least one of the following is true:
 - (x_m, y_n) is in M
 - x_m is not matched
 - y_n is not matched

Recurrence

• So, for i and j > 0

 (x_i,y_j) is in an optimal alignment M for this subproblem iff the minimum achieved is achieved by the first of these three values.

Kleinberg, Tardos, Algorithm Design, Pearson Addison Wesley, 2006, p 282

Sequence Alignment Graph

Figure 6.17 A graph-based picture of sequence alignment.

Kleinberg, Tardos, p 283

Recover Alignment

Kleinberg, Tardos, p 284

Figure 6.18 The OPT values for the problem of aligning the words *mean* to *name*.

Sequence Alignment (space efficient)

• Hirschberg - 1975

Kleinberg, Tardos, p 285

value: need the current and previous column

```
Space-Efficient-Alignment(X, Y)
  Array B[0...m, 0...1]
  Initialize B[i, 0] = i\delta for each i (just as in column 0 of A)
 For i = 1, ..., n
     B[0,1] = j\delta (since this corresponds to entry A[0,j])
     For i = 1, ..., m
         B[i, 1] = \min[\alpha_{x_i y_i} + B[i - 1, 0]],
                             \delta + B[i - 1, 1], \ \delta + B[i, 0]
     Endfor
     Move column 1 of B to column 0 to make room for next iteration:
```

```
Update B[i, 0] = B[i, 1] for each i
```

Endfor

Actual Alignment

How do we recover the actual alignment?
 We need the entire matrix?

Algorithm

Divide-and-Conquer-Alignment(X, Y)

Let m be the number of symbols in X

```
Let n be the number of symbols in Y
```

If $m \le 2$ or $n \le 2$ then

Compute optimal alignment using Alignment(X,Y) Call Space-Efficient-Alignment (X, Y[1:n/2])Call Backward-Space-Efficient-Alignment (X, Y[n/2 + 1:n])Let q be the index minimizing f(q, n/2) + g(q, n/2)Add (q, n/2) to global list P Divide-and-Conquer-Alignment(X[1:q], Y[1:n/2]) Divide-and-Conquer-Alignment(X[q+1:n], Y[n/2+1:n]) Return P

Kleinberg, Tardos, p 288

6.7 Sequence Alignment in Linear Space via Divide and Conquer

Kleinberg, Tardos, p 289

String Matching / Searching

Naive

- Horspool¹
- Boyer-Moore¹

Not Dynamic Programming because there are not subproblems.

But precompute a table to help you solve the problem.

Rabin Karp²

• Knuth Morris Pratt²

 $^{\rm 1}$ Levitin, Introduction to The Design and Analysis of Algorithms, $3^{\rm rd}$ edition, Pearson Addison Wesley, p 259

² CLRS, p 990 &1002

```
int naiveSearch(string, pattern)
                                                Naive
  retVal = -1;
 mismatch = true:
  for( i=0;i < string.length - pattern.length &&</pre>
       true == mismatch ; i++)
  {
     mismatch = false;
     for( j =0; j<pattern.length && !mismatch ; j++)</pre>
     Ł
         if( string[i] != pattern[j] )
             mismatch = true;
     if ( !mismatch)
     ł
          retVal = i;
  }
  return retVal;
```

Horspool

• match the pattern right to left

on mismatch, shift the pattern smartly
 by 1+ character

Preprocess string to determine shifting
 build a table for shifts for each valid character

Example

need a better string!

Shifting

• t(c) =

the pattern's length, m, if c is not among the first m-1 characters of the pattern

the distance from the rightmost c among the first m-1 characters of the pattern to its last character, otherwise

а	b	С	f	i	 р	 Х	у	Z
						7		

```
Horspool(P[0..m-1], T[0..n-1])
        T \leftarrow Compute Shifts(P)
                                                     ' Generate table of shifts
        i \leftarrow m - 1
                                                     ' Position of pattern's right end
        while i \le n - 1
                 \mathbf{k} \leftarrow \mathbf{0}
                                                     ' Number of matched characters
                 while k \le m - 1 and P[m-1-k] = T[i-k]
                          k++
                 if k = m
                          return "Match at "+(i - m + 1)
                 else
                          i \leftarrow i + T[i]
                                                     ' No match found
        return -1
```

¹ Levitin, Introduction to The Design and Analysis of Algorithms, 3rd edition, Pearson Addison Wesley, p 262

http://www.math.uaa.alaska.edu/~afkjm/cs351/handouts/strings.ppt