Longest Common Subsequence (LCS)

Chapter 15

p 390

Longest Common Subsequence

- Problem: Let $x_{1} x_{2} \ldots x_{m}$ and $y_{1} y_{2} \ldots y_{n}$ be two sequences over some alphabet.
- We assume they are strings of characters
- Find a longest common subsequence (LCS) of $x_{1} x_{2} \ldots x_{m}$ and $y_{1} y_{2} \ldots y_{n}$

Many other string operations have the same basic structure.

Example

- $X_{1} X_{2} X_{3} X_{4} X_{5} X_{6} X_{7} X_{8}=b a c b f f c b$
- $\mathrm{y}_{1} \mathrm{y}_{2} \mathrm{y}_{3} \mathrm{y}_{4} \mathrm{y}_{5} \mathrm{y}_{6} \mathrm{y}_{7} \mathrm{y}_{8} \mathrm{y}_{9}=\mathrm{d}$ abeabfbc
- Longest Common Subsequence is:

A subsequence is a set of characters that appear in left- to-right order, but not necessarily consecutively.

Dynamic Programming

- LCS can be solved using dynamic programming

1. Characterize the structure of an optimal solution
2. Recursively define the value of an optimal solution
3. Compute the value of an optimal solution bottom-up
4. Construct an optimal solution from the computed information

Step 1

Characterizing

Optimal substructure:
If $z=z_{1} z_{2} \ldots z_{p}$ is a LCS of $x_{1} x_{2} \ldots x_{m}$ and $y_{1} y_{2} \ldots y_{n}$, then At least one of these most hold

- $x_{m}=y_{n}$, and $z_{1} z_{2} \ldots z_{p-1}$ is an LCS of $x_{1} x_{2} \ldots x_{m-1}$ and $y_{1} y_{2} \ldots y_{n-1}$,
- $x_{m}!=y_{n}$, and $z_{1} z_{2} \ldots z_{p}$ is an LCS of $x_{1} x_{2} \ldots x_{m-1}$ and $y_{1} y_{2} \ldots y_{n}$,
- $x_{m}!=y_{n}$, and $z_{1} z_{2} \ldots z_{p}$ is an LCS of $x_{1} x_{2} \ldots x_{m}$ and $y_{1} y_{2} \ldots y_{n-1}$.

Step 2: Recursive Solution

Let $c_{i j}=$ length of LCS of $x_{1} x_{2} \ldots x_{i}$ and $y=y_{1} y_{2} \ldots y_{j}$.

$$
\begin{aligned}
& c[i, j]= \begin{cases}0 & \text { if } i=0 \text { or } j=0, \\
1+c[i-1, j-1] & \text { if } x_{i}=y_{j}, \\
\max (c[i-1, j], c[i, j-1]) & \text { if } x_{i} \neq y_{j} .\end{cases} \\
& b[i, j]=\left\{\begin{array}{cl}
" \nwarrow " & \text { if } x_{i}=y_{j}, \\
" \uparrow " & \text { if } x_{i} \neq y_{j} \text { and } c[i-1, j] \geq c[i, j-1], \\
" \leftarrow " & \text { if } x_{i} \neq y_{j} \text { and } c[i-1, j]<c[i, j-1] .
\end{array}\right.
\end{aligned}
$$

We compute the $c[i, j]$ and $b[i, j]$ in order of increasing $i+j$, or alternatively in order of increasing i, and for a fixed i, in order of increasing j.
p 394

Step $3 \& 4$
$\overline{\operatorname{LCS}-L E N G T H}(X, Y, m, n)$
let $b[1 \ldots m, 1 \ldots n]$ and $c[0 \ldots m, o \ldots n]$ be new tables for $i=1$ to m

$$
c[i, 0]=0
$$

for $j=0$ to n

$$
c[0, j]=0
$$

for $i=1$ to m

$$
\text { for } j=1 \text { to } n
$$

$$
\begin{gathered}
\text { if } x_{i}==y_{j} \\
c[i, j]=c[i-1, j-1]+1 \\
b[i, j]=" \nwarrow " \\
\text { else if } c[i-1, j] \geq c[i, j-1] \\
c[i, j]=c[i-1, j] \\
b[i, j]=" \uparrow " \\
\text { else } c[i, j]=c[i, j-1] \\
b[i, j]=" \leftarrow "
\end{gathered}
$$

return c and b

Example

b,c matrices combined

$i i^{j}$	0	$\stackrel{1}{\text { d }}$		2	3		4	5 a		$\begin{aligned} & 6 \\ & h \end{aligned}$	7		$\begin{aligned} & 8 \\ & b \\ & b \end{aligned}$	${ }_{\text {c }}^{\text {c }}$
0	0	0		0	0		0	0	0	0	0		0	0
1b	0													
2a	0													
3 c	0													
4b	0													
5 f	0													
6 f	0													
70	0													
8 b	0													

p395

PRint-LCS (b, X, i, j)

if $i==0$ or $j=0$
return
if $b[i, j]==$ " "
Print-LCS $(b, X, i-1, j-1)$
print x_{i}
elseif $b[i, j]==" \uparrow "$
$\operatorname{Print}-L C S(b, X, i-1, j)$
else Print-LCS $(b, X, i, j-1)$

String Similarity

- Edit Distance
- Levenshtein
- minimize changes
- Sequence Alignment
- Needleman-Wunsch
- maximize similarity
" by giving weights to types of differences

Edit Distance

- How many insertions, deletions, replacements will transform one string into another?
- Damerau-Levenshtein includes transpositions as a special case the \rightarrow teh

$$
\operatorname{lev}_{a, b}(i, j)= \begin{cases}\max (i, j) & \text { if } \min (i, j)=0 \\
\min \left\{\begin{array}{l}
\operatorname{lev}_{a, b}(i-1, j)+1 \\
\operatorname{lev}_{a, b}(i, j-1)+1 \\
\operatorname{lev}_{a, b}(i-1, j-1)+\left[a_{i} \neq b_{j}\right]
\end{array}\right. & \text { otherwise. }\end{cases}
$$

http://en.wikipedia.org/wiki/Levenshtein_distance

Levenshtein

Edit Distance Matrix

ATCGTT vs AGTTAC

		A	G	T	T	A	C
	0	1	2	3	4	5	6
A	1						
T	2						
C	3						
G	4						
T	5						
T	6						

i
Backtracking deletion

UP insertion

LEFT match/mismatch DIAG

Sequence Alignment

- Similarity based on gaps and mismatches.
- Alignment
- matched pairs from both strings
- no crossings
- Generalized form of Levenshtein
- additional parameters:
" gap penalty, ठ
- mismatch $\operatorname{cost}\left(\alpha_{x, y} ; \quad \alpha_{x, x}=0\right)$

Kleinberg, Tardos, Algorithm Design, Pearson Addison Wesley, 2006, p 278 http://www.aw-bc.com/info/kleinberg/

Recurrence

- Two strings $\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{m}}$ and $\mathrm{y}_{1} \ldots \mathrm{y}_{\mathrm{n}}$
- In an optimal alignment, M, at least one of the following is true:
- $\left(x_{m}, y_{n}\right)$ is in M
- x_{m} is not matched
o y_{n} is not matched

Recurrence

- So, for i and $\mathrm{j}>0$
- opt $(\mathrm{i}, \mathrm{j})=\min \left[\alpha_{\mathrm{x}, \mathrm{ij}}+\operatorname{opt}(\mathrm{i}-1, \mathrm{j}-1)\right.$, $\delta+\operatorname{opt}(\mathrm{i}-1, \mathrm{j}), \quad / / \mathrm{x}_{\mathrm{i}}$ is not matched
$\delta+\operatorname{opt}(\mathrm{i}, \mathrm{j}-1)] / / \mathrm{y}_{\mathrm{j}}$ is not matched
- $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{j}}\right)$ is in an optimal alignment M for this subproblem iff the minimum achieved is achieved by the first of these three values.

Kleinberg, Tardos, Algorithm Design, Pearson Addison Wesley, 2006, p 282

Sequence Alignment Graph

Figure 6.17 A graph-based picture of sequence allgnment.
Kleinberg, Tardos, p 283

Recover Alignment

Figure 6.18 The opt values
Kleinberg, Tardos, p 284 for the problem of aligning the words mean to name.

Sequence Alignment (space efficient)

- Hirschberg - 1975
- value: need the current and previous column

```
Space-Efficient-Alignment(X,Y)
    Array B[0...m,0...1]
    Initialize B[i,0]=i\delta for each i (just as in column 0 of A)
    For j=1,\ldots,n
    B[0,1]=j\delta (since this corresponds to entry A[0,j])
    For }i=1,\ldots,
        B[i,1]=min[\alpha\mp@subsup{\alpha}{\mp@subsup{x}{i}{}}{}\mp@subsup{y}{j}{}+B[i-1,0],
                        \delta+B[i-1,1], \delta+B[i,0]]
```

Endfor
Move column 1 of B to column 0 to make room for next iteration: Update $B[i, 0]=B[i, 1]$ for each i
Endfor

Actual Alignment

- How do we recover the actual alignment?
- We need the entire matrix?

Algorithm

Divide-and-Conquer-Alignment (X, Y)
Let m be the number of symbols in X
Let n be the number of symbols in Y
If $m \leq 2$ or $n \leq 2$ then
Compute optimal alignment using Alignment (X, Y)
Call Space-Efficient-Alignment ($X, Y[1: n / 2]$)
Call Backward-Space-Efficient-Alignment ($X, Y[n / 2+1: n]$)
Let q be the index minimizing $f(q, n / 2)+g(q, n / 2)$
Add ($q, n / 2$) to global list P
Divide-and-Conquer-Alignment ($X[1: q], Y[1: n / 2]$)
Divide-and-Conquer-Alignment $(X[q+1: n], Y[n / 2+1: n])$
Return P
Kleinberg, Tardos, p 288
6.7 Sequence Alignment in Linear Space via Divide and Conquer

First recursive call
Kleinberg, Tardos, p 289

String Matching / Searching

- Naive
- Horspool1
- Boyer-Moore ${ }^{1}$

Not Dynamic Programming because there are not subproblems.

But precompute a table to help you solve the problem.

- Rabin Karp²
- Knuth Morris Pratt²
${ }^{1}$ Levitin, Introduction to The Design and Analysis of Algorithms, $3^{\text {rd }}$ edition, Pearson Addison Wesley, p 259
int naiveSearch(string, pattern)

```
retVal = -1;
    mismatch = true:
for( i=0;i < string.length - pattern.length &&
                true == mismatch ; i++)
{
        mismatch = false;
        for( j =0;j<pattern.length && !mismatch ;j++)
        {
            if( string[i] != pattern[j] )
            {
                mismatch = true;
            }
        }
        if ( !mismatch)
        {
        retVal = i;
        }
}
return retVal;
```


Horspool

- match the pattern right to left
- on mismatch, shift the pattern smartly
- by 1+ character
- Preprocess string to determine shifting
- build a table for shifts for each valid character

Example

need a better string!

String
character comparisons

String

							i					

String

String

											p	a	c	i	f	i	c		

Shifting

- $\mathrm{t}(\mathrm{c})=$
the pattern's length, m, if c is not among the first $\mathrm{m}-1$ characters of the pattern
the distance from the rightmost c among the first $\mathrm{m}-1$ characters of the pattern to its last character, otherwise

p	a	c	i	f	i	c

a	b	c	f	i	\ldots	p	\ldots	x	y	z
								7		

```
Horspool(P[0..m-1], T[0..n-1])
    T}\leftarrow\mathrm{ ComputeShifts(P) 'Generate table of shifts
    i}\leftarrow\textrm{m}-1\quad\mathrm{ ' Position of pattern's right end
    while i\leqn-1
        k}\leftarrow0\quad\mathrm{ 'Number of matched characters
        while k\leqm-1 and P[m-1-k]=T[i-k]
            k++
        if k=m
            return "Match at " + (i - m + 1)
        else
            i}\leftarrow\textrm{i}+\textrm{T}[\textrm{i}
    return -1
    ` No match found
```

${ }^{1}$ Levitin, Introduction to The Design and Analysis of Algorithms, $3{ }^{\text {rd }}$ edition, Pearson Addison Wesley, p 262

