
1

Longest Common Subsequence
(LCS)

Chapter 15

p 390

11/15/13 CS380 Algorithm Design and Analysis

2

Longest Common Subsequence

• Problem: Let x1x2...xm and y1y2...yn be two
sequences over some alphabet.
o We assume they are strings of characters

• Find a longest common subsequence (LCS)
of x1x2...xm and y1y2...yn

11/15/1
3

CS380 Algorithm Design and Analysis

Many other string operations have the same basic structure.

3

Example

• x1x2x3x4x5x6x7x8= b a c b f f c b

• y1y2y3y4y5y6y7y8y9 = d a b e a b f b c

• Longest Common Subsequence is:

11/15/1
3

CS380 Algorithm Design and Analysis

A subsequence is a set of characters that
appear in left- to-right order, but not necessarily
consecutively.

4

Dynamic Programming

• LCS can be solved using dynamic
programming

11/15/1
3

CS380 Algorithm Design and Analysis

1. Characterize the structure of an optimal
solution

2. Recursively define the value of an optimal
solution

3. Compute the value of an optimal solution
bottom-up

4. Construct an optimal solution from the
computed information

5

Step 1 Characterizing

• Optimal substructure:
If z = z1z2...zp is a LCS of x1x2...xm and y1y2...yn, then
 At least one of these most hold

o xm = yn, and z1z2...zp–1 is an LCS of x1x2...xm–1 and y1y2...yn–1,

o xm != yn, and z1z2...zp is an LCS of x1x2...xm–1 and y1y2...yn,

o xm != yn, and z1z2...zp is an LCS of x1x2...xm and y1y2...yn–1.

11/15/1
3

CS380 Algorithm Design and Analysis

6

Step 2: Recursive Solution

11/15/1
3

CS380 Algorithm Design and Analysis

p 394

Step 3&4

8

Example

 \ j
 i \

0 1
d

2
a

3
b

4
e

5
a

6
b

7
f

8
b

9
c

0 0 0 0 0 0 0 0 0 0 0

1 b 0

2 a 0

3 c 0

4 b 0

5 f 0

6 f 0

7 c 0

8 b 0
11/15/13 CS380 Algorithm Design and Analysis

b,c matrices combined

p395

10

String Similarity

• Edit Distance
o Levenshtein

o minimize changes

• Sequence Alignment
o Needleman-Wunsch

o maximize similarity
 by giving weights to types of differences

http://xlinux.nist.gov/dads/HTML/Levenshtein.html

11

Edit Distance

• How many insertions, deletions,
replacements will transform one string into
another?
o Damerau-Levenshtein includes transpositions

as a special case the → teh

http://en.wikipedia.org/wiki/Levenshtein_distance

12

Levenshtein

13

Edit Distance Matrix

ATCGTT vs AGTTAC

i

j

Backtracking
deletion UP
insertion LEFT
match/mismatch DIAG

A G T T A C

 0 1 2 3 4 5 6

A 1

T 2

C 3

G 4

T 5

T 6

14

Sequence Alignment

• Similarity based on gaps and mismatches.

• Alignment
o matched pairs from both strings

o no crossings

• Generalized form of Levenshtein
o additional parameters:

 gap penalty, δ
 mismatch cost (αx,y ; αx,x = 0)

Kleinberg, Tardos, Algorithm Design, Pearson Addison Wesley, 2006, p 278

http://www.aw-bc.com/info/kleinberg/

15

Recurrence

• Two strings x1...xm and y1...yn

• In an optimal alignment, M, at least one of
the following is true:

o (xm, yn) is in M

o xm is not matched

o yn is not matched

16

Recurrence

• So, for i and j > 0

• opt(i,j)= min[αxi,yj + opt(i-1,j-1),
δ + opt(i-1,j), // xi is not matched

δ + opt(i,j-1)] // yj is not matched

• (xi,yj) is in an optimal alignment M for this
subproblem iff the minimum achieved is
achieved by the first of these three values.

Kleinberg, Tardos, Algorithm Design, Pearson Addison Wesley, 2006, p 282

17

Sequence Alignment Graph

Kleinberg, Tardos, p 283

18

Recover Alignment

Kleinberg, Tardos, p 284

19

Sequence Alignment (space efficient)

• Hirschberg - 1975
o value: need the current and previous column

Kleinberg, Tardos, p 285

20

Actual Alignment

• How do we recover the actual alignment?
o We need the entire matrix?

21

Algorithm

Kleinberg, Tardos, p 288

22

Kleinberg, Tardos, p 289

23

String Matching / Searching

• Naive

• Horspool1

• Boyer-Moore1

• Rabin Karp2

• Knuth Morris Pratt2

1 Levitin, Introduction to The Design and Analysis of Algorithms,
3rd edition, Pearson Addison Wesley, p 259

2 CLRS, p 990 &1002

Not Dynamic Programming
because there are not
subproblems.

But precompute a table
to help you solve the
problem.

Naiveint naiveSearch(string, pattern)
{
 retVal = -1;
 mismatch = true:

 for(i=0;i < string.length - pattern.length &&

 true == mismatch ; i++)
 {
 mismatch = false;
 for(j =0;j<pattern.length && !mismatch ;j++)
 {
 if(string[i] != pattern[j])
 {
 mismatch = true;
 }
 }

 if (!mismatch)
 {
 retVal = i;
 }
 }

 return retVal;
}

25

Horspool

• match the pattern right to left

• on mismatch, shift the pattern smartly
o by 1+ character

• Preprocess string to determine shifting
o build a table for shifts for each valid character

26

Example

x

String

p a c i f i c

i

String

p a c i f i c

d r i v e

String

g r o v e

p a c i f i c

String

p a c i f i c

pattern movement

character comparisons

need a better string!

27

Shifting

• t(c) =

the pattern's length, m, if c is not among the first
m-1 characters of the pattern

the distance from the rightmost c among the first
m-1 characters of the pattern to its last
character, otherwise

a b c f i ... p ... x y z

7

p a c i f i c

http://www.math.uaa.alaska.edu/~afkjm/cs351/handouts/strings.ppt

1 Levitin, Introduction to The Design and Analysis of Algorithms,
3rd edition, Pearson Addison Wesley, p 262

	Longest Common Subsequence (LCS)
	Longest Common Subsequence
	Example
	Dynamic Programming
	Step 1
	Step 2: Recursive Solution
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

