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Longest Common Subsequence

• Problem: Let x1x2...xm and y1y2...yn be two 
sequences over some alphabet. 
o We assume they are strings of characters

• Find a longest common subsequence (LCS) 
of x1x2...xm and y1y2...yn
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Many other string operations have the same basic structure.
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Example

• x1x2x3x4x5x6x7x8= b a c b f f c b 

• y1y2y3y4y5y6y7y8y9 = d a b e a b f b c

• Longest Common Subsequence is:
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A subsequence is a set of characters that 
appear in left- to-right order, but not necessarily 
consecutively.
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Dynamic Programming

• LCS can be solved using dynamic 
programming
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1. Characterize the structure of an optimal 
solution 

2. Recursively define the value of an optimal 
solution

3. Compute the value of an optimal solution 
bottom-up 

4. Construct an optimal solution from the 
computed information
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Step 1 Characterizing 

• Optimal substructure: 
If z = z1z2...zp is a LCS of x1x2...xm and y1y2...yn, then 
 At least one of these most hold

o xm = yn, and z1z2...zp–1 is an LCS of x1x2...xm–1 and y1y2...yn–1, 

o xm != yn, and z1z2...zp is an LCS of x1x2...xm–1 and y1y2...yn,

o xm != yn, and z1z2...zp is an LCS of x1x2...xm and y1y2...yn–1.
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Step 2: Recursive Solution
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Step 3&4
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Example

    \   j
 i   \ 

0 1
d

2
a

3
b

4
e

5
a

6
b

7
f

8
b

9
c

0 0 0 0 0 0 0 0 0 0 0

1 b 0

2 a 0

3 c 0

4 b 0

5 f 0

6 f 0

7 c 0

8 b 0
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b,c matrices combined
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String Similarity

• Edit Distance
o Levenshtein

o minimize changes

• Sequence Alignment
o Needleman-Wunsch

o maximize similarity
 by giving weights to types of differences

http://xlinux.nist.gov/dads/HTML/Levenshtein.html
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Edit Distance

• How many insertions, deletions, 
replacements will transform one string into 
another?
o Damerau-Levenshtein includes transpositions 

as a special case    the → teh

http://en.wikipedia.org/wiki/Levenshtein_distance
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Levenshtein
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Edit Distance Matrix

ATCGTT vs AGTTAC

i

j

Backtracking
deletion UP
insertion LEFT
match/mismatch DIAG

A G T T A C

 0 1 2 3 4 5 6

A 1

T 2

C 3

G 4

T 5

T 6
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Sequence Alignment

• Similarity based on gaps and mismatches.

• Alignment
o matched pairs from both strings

o no crossings

• Generalized form of Levenshtein
o additional parameters: 

 gap penalty, δ
 mismatch cost ( αx,y ;   αx,x = 0 )

Kleinberg, Tardos, Algorithm Design, Pearson Addison Wesley, 2006, p 278

http://www.aw-bc.com/info/kleinberg/
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Recurrence

• Two strings x1...xm and y1...yn

• In an optimal alignment, M, at least one of 
the following is true:

o (xm, yn) is in M

o xm is not matched

o yn is not matched
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Recurrence

• So, for i and j > 0

• opt(i,j)= min[αxi,yj + opt(i-1,j-1), 
δ + opt(i-1,j),  // xi is not matched

δ + opt(i,j-1) ] // yj is not matched

• (xi,yj) is in an optimal alignment M for this 
subproblem iff the minimum achieved is 
achieved by the first of these three values.

Kleinberg, Tardos, Algorithm Design, Pearson Addison Wesley, 2006, p 282
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Sequence Alignment Graph

Kleinberg, Tardos, p 283



18

Recover Alignment

Kleinberg, Tardos, p 284
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Sequence Alignment (space efficient)

• Hirschberg - 1975
o value: need the current and previous column

Kleinberg, Tardos, p 285
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Actual Alignment

• How do we recover the actual alignment?
o We  need the entire matrix?
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Algorithm

Kleinberg, Tardos, p 288
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Kleinberg, Tardos, p 289
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String Matching / Searching

• Naive

• Horspool1

• Boyer-Moore1

• Rabin Karp2

• Knuth Morris Pratt2

1 Levitin, Introduction to The Design and Analysis of Algorithms, 
3rd edition, Pearson Addison Wesley, p 259

2 CLRS, p 990 &1002

Not Dynamic Programming
because there are not
subproblems.

But precompute a table
to help you solve the
problem.



Naiveint naiveSearch(string, pattern)
{
  retVal = -1;
  mismatch = true:
 
  for( i=0;i  < string.length - pattern.length &&

 true == mismatch  ; i++)
  {
     mismatch = false;
     for( j =0;j<pattern.length && !mismatch ;j++)
     {
         if( string[i] != pattern[j] )
         {
             mismatch = true;
         }
      }

     if ( !mismatch)
     {
          retVal = i;
     }
   }

  return retVal;
} 
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Horspool

• match the pattern right to left

• on mismatch, shift the pattern smartly
o by 1+ character

• Preprocess string to determine shifting
o build a table for shifts for each valid character
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Example

x

String

p a c i f i c

i

String

p a c i f i c

d r i v e

String

g r o v e

p a c i f i c

String

p a c i f i c

pattern movement

character comparisons

need a better string!
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Shifting

• t(c) =

the pattern's length, m, if c is not among the first 
m-1 characters of the pattern

the distance from the rightmost c among the first 
m-1 characters of the pattern to its last 
character, otherwise

a b c f i ... p ... x y z

7

p a c i f i c



http://www.math.uaa.alaska.edu/~afkjm/cs351/handouts/strings.ppt

1 Levitin, Introduction to The Design and Analysis of Algorithms, 
3rd edition, Pearson Addison Wesley, p 262
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