Single-Source Shortest Path

Chapter 24

Shortest Paths

- Finding the shortest path between two nodes comes up in many applications
- Transportation problems
- Motion planning
- Communication problems
- Six degrees of separation!

Shortest Paths

- In an unweighted graph, the cost of a path is just the number of edges on the shortest paths
- What algorithm have we already covered that can do this?
- In a weighted graph, the weight of a path between two vertices is the sum of the weights of the edges on a path

Shortest Paths Problems

- Input: a directed graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and a weight function $w: E \rightarrow R$
- The weight of a path $p=v_{0}, v_{1}, v_{2}, \ldots, v_{k}$ is

Example

Variants

- Single Source Shortest Paths
- Single Destination Shortest Paths
- Single Pair Shortest Path
- All Pairs Shortest Paths

Subpaths

- Subpaths of shortest paths are shortest paths
- Lemma: If $p=v_{0}, v_{2}, v_{2}, \ldots, v_{j}, \ldots v_{k}$ is a shortest path from v_{0} to v_{k}, then $p^{\prime}=v_{0}, v_{1}, v_{2}, \ldots, v_{j}$ is a shortest path from v_{0} to v_{j}

Negative Weight Edges

- Fine, as long as no negative-weight cycles are reachable from the source

Cycles

- Shortest paths can't contain cycles:
- Already ruled out negative-weight cycles
- Positive-weight \rightarrow we can get a shorter weight by omitting the cycle
- Zero-weight: no reason to use them \rightarrow assume that our solutions will not use them

Output

- For each vertex v in V:
- $\mathrm{d}[\mathrm{v}]=\delta(\mathrm{s}, \mathrm{v})$
- $\pi[\mathrm{v}]=$ predecessor of v on a shortest path from s

Initialization

- All the shortest-paths algorithms start with

Init-Single-Source (G, s)
for each $v \in G . V$

$$
v . d=\infty
$$

$$
\nu . \pi=\text { NIL }
$$

$s . d=0$

Relaxation

- The process of relaxing an edge (u,v) consists of testing whether we can improve the shortest path to v found so far by going through u and, if so, updating $d[v]$ and $\pi[v]$

$$
\begin{aligned}
& \operatorname{RELAX}(\mathrm{u}, \mathrm{v}, \mathrm{w}) \\
& \text { if } v . d>u \cdot d+w(u, v) \\
& \quad v \cdot d=u \cdot d+w(u, v) \\
& \quad v \cdot \pi=u
\end{aligned}
$$

Single-Source Shortest-Paths

- For all single-source shortest-paths algorithms we'll look at:
- Start by calling INIT-SINGLE-SOURCE
- Then relax edges
- The algorithms differ in the order and how many times they relax each edge

Bellman-Ford Algorithm

- Allows negative-weight edges
- Computes $\mathrm{d}[\mathrm{v}]$ and $\pi[\mathrm{v}]$ for all v in V
- Returns true if no negative-weight cycles are reachable from s, false otherwise

BELLMAN FORD

$\operatorname{BELLMAN-FORD}(G, w, s)$
Init-Single-Source (G, s)
for $i=1$ to $|G . V|-1$
for each edge $(u, v) \in G . E$ $\operatorname{RELAX}(u, v, w)$
for each edge $(u, v) \in G . E$

$$
\text { if } v . d>u . d+w(u, v)
$$

return FALSE
return TRUE

- Time:

Example

Single-Source Shortest-Paths

- In a DAG!

DAG-Shortest-Paths (G, w, s)
topologically sort the vertices
Init-Single-Source (G, s)
for each vertex u, taken in topologically sorted order for each vertex $v \in G$.Adj $[u]$ $\operatorname{RELAX}(u, v, w)$

Example

Dijkstra's Algorithm

- No negative-weight edges
- Essentially a weighted version of BFS
- Instead of a FIFO Queue, use a priority queue
- Keys are shortest-path weights (d[v])
- Have two sets of vertices
- $S=$ vertices whose final shortest-path weights are determined
- $\mathrm{Q}=$ priority queue $=\mathrm{V}-\mathrm{S}$

DIJKSTRA

DIJKSTRA (G, w, s)
Init-Single-Source (G, s)
$S=\emptyset$
$Q=G . V$
// i.e., insert all vertices into Q while $Q \neq \emptyset$
$u=\operatorname{Extract-Min}(Q)$
$S=S \cup\{u\}$
for each vertex $v \in G . \operatorname{Adj}[u]$ $\operatorname{RELAX}(u, v, w)$

Example

Your Turn

- What is the single-source shortest-path tree starting at a?

Question

- We are running one of these three algorithms on the graph below, where the algorithm has already processed the boldface edges.
- Prim's for the minimum spanning tree
- Kruskal's for the minimum spanning tree
- Dijkstra's shortest paths from s

Continued

- Which edge would be added next in Prim's algorithm
- Which edge would be added next in Kruskal's algorithm
- Which vertex would be marked next in Dijkstra's algorithm?

