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Single-Source Shortest Path

Chapter 24
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Shortest Paths

• Finding the shortest path between two nodes 
comes up in many applications
o Transportation problems

o Motion planning

o Communication problems 

o Six degrees of separation!

10/31/13 CS380 Algorithm Design and Analysis



3

Shortest Paths

• In an unweighted graph, the cost of a path is 
just the number of edges on the shortest 
paths

• What algorithm have we already covered 
that can do this?

• In a weighted graph, the weight of a path 
between two vertices is the sum of the 
weights of the edges on a path
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Shortest Paths Problems

• Input: a directed graph G = (V, E) and a 
weight function 

• The weight of a path                          is
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Example
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Variants

• Single Source Shortest Paths

• Single Destination Shortest Paths

• Single Pair Shortest Path

• All Pairs Shortest Paths
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Subpaths

• Subpaths of shortest paths are shortest 
paths

• Lemma: If                                 is a shortest 
path from v0 to vk, then                          is a 
shortest path from v0 to vj 
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• Fine, as long as no negative-weight cycles 
are reachable from the source
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Cycles

• Shortest paths can’t contain cycles:
o Already ruled out negative-weight cycles

o Positive-weight → we can get a shorter weight 
by omitting the cycle

o Zero-weight: no reason to use them → assume 
that our solutions will not use them
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Output

• For each vertex v in V:
o d[v] = δ (s,v)

o π[v] = predecessor of v on a shortest path from s
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Initialization

• All the shortest-paths algorithms start with
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Relaxation

• The process of relaxing an edge (u,v) 
consists of testing whether we can improve 
the shortest path to v found so far by going 
through u and, if so, updating d[v] and π [v]
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Single-Source Shortest-Paths

• For all single-source shortest-paths 
algorithms we’ll look at:
o Start by calling INIT-SINGLE-SOURCE

o Then relax edges

• The algorithms differ in the order and how 
many times they relax each edge
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Bellman-Ford Algorithm

• Allows negative-weight edges

• Computes d[v] and π [v] for all v in V

• Returns true if no negative-weight cycles are 
reachable from s, false otherwise
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BELLMAN FORD

• Time: 
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Example
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Single-Source Shortest-Paths

• In a DAG!
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Example
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Dijkstra’s Algorithm

• No negative-weight edges

• Essentially a weighted version of BFS
o Instead of a FIFO Queue, use a priority queue

o Keys are shortest-path weights (d[v])

• Have two sets of vertices
o S = vertices whose final shortest-path weights 

are determined

o Q = priority queue = V - S
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DIJKSTRA
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Example
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Your Turn

• What is the single-source shortest-path tree 
starting at a?
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Question

• We are running one of these three 
algorithms on the graph below, where the 
algorithm has already processed the bold-
face edges.
o Prim’s for the minimum spanning tree

o Kruskal’s for the minimum spanning tree

o Dijkstra’s shortest paths from s
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Continued

• Which edge would be 
added next in Prim’s 
algorithm

• Which edge would be 
added next in Kruskal’s 
algorithm

• Which vertex would be 
marked next in Dijkstra’s 
algorithm?
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