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Minimum Spanning Trees

Chapter 23
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Spanning Tree

• What are the edges you need to keep the 
graph connected?
o If you remove any edge, the graph becomes 

disconnected

• Minimum Spanning Tree
o minimize the total weight of the edges

• Problem: Minimal set of roads needed to 
connect cities
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Minimum Spanning Tree

• Undirected graph G = (V, E)
o Weight w(u, v) on each edge (u, v) in E

o Find T that is a subset of E such that
 T connects all vertices, and
                             is minimized
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Minimum Spanning Tree
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Growing an MST

• Properties of an MST:

• Building up a Solution
o
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Generic MST Algorithm

10/30/13 CS380 Algorithm Design and Analysis



7

Proof via loop invariant (p 18-19)

• Initialization

• Maintenance

• Termination
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Finding a Safe Edge

• How do we find safe edges?

• Edge (c,f) - Is it safe for A?
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Finding a Safe Edge
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Definitions

• Let S be a subset of V and A be a subset of E
o A cut (S, V-S) is a partition of vertices into 

disjoint sets V and S-V

o Edge (u,v) in E crosses cut (S,V-S) if one 
endpoint is in S and the other is in V-S

o A cut respects A (A is a set of edges) if and only 
if no edge in A crosses the cut

o An edge is a light edge crossing a cut if and only 
if its weight is minimum over all edges crossing 
the cut
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Theorem

• Let A be a subset of some MST, (S,V-S) be 
a cut that respects A, and (u,v) be a light 
edge crossing (S,V-S).

• Then….
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Generic-MST

• So, in a generic MST
o A is a forest (set of trees. haha) containing 

connected components. 

o Any safe edge merges two of these components 
into one. 

o Since an MST has exactly |V|-1 edges, the for 
loop iterates |V|-1 times.
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Kruskal’s Algorithm

• G = (V,E) is a connected, undirected, 
weighted graph. w:E->R
o Starts with each vertex being its own component

o Repeatedly merges two components into one by 
choosing the light edge that connects them

o Scans the set of edges in monotonically 
increasing order by weight

o Uses a disjoint-set data structure to determine 
whether an edge connects vertices in different 
components
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Kruskal(V,E,w)
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Example
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Prim’s Algorithm

• Builds one tree, so A is always a tree

• Starts from an arbitrary “root” r

• At each step, find a light edge crossing cut 
(VA, V-VA), where VA = vertices that A is 
incident on. Add this edge to A
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How to Find a Light Edge Quickly

• Use a priority queue Q:

o Each object is a vertex in V-VA

o Key of v is minimum weight of any edge (u,v), 
where u is in VA

o  Then the vertex returned by EXTRACT-MIN is v 
such that there exists u in VA and (u,v) is a light 
edge crossing (VA , V-VA)

o Key of v is infinity if v is not adjacent to any 
vertices in VA
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Prim’s Algorithm

• The edges of A will form a rooted tree with 
root r:
o r is given as an input to the algorithm, but it can 

be any vertex

o Each vertex knows its parent in the tree by the 
attribute π[v] = parent of v. π[v] = NIL if v = r or v 
has no parent
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PRIM(G,w,r)
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Example
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