Elementary Graph Algorithms

Chapter 22

Graph Representation

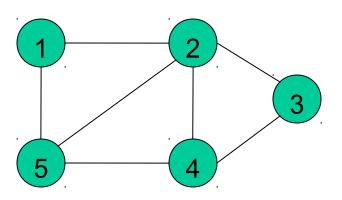
- Given a graph G = (V, E)
- Directed or Undirected
- Representation

Running Times

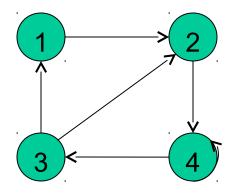
• What is n?

Adjacency Lists

- Array Adj of |V| lists, one per vertex
- Vertex u's list has all vertices v such that $(u, v) \in E$
- Example:

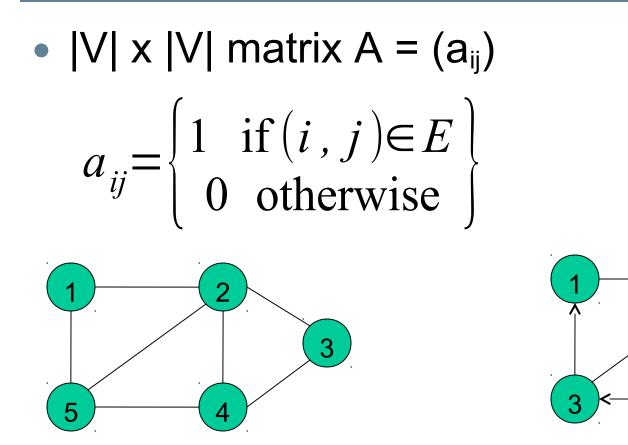


Example



- Space:
- Time to list all vertices adjacent to u:
- Time to determine if (u,v) is an edge:

Adjacency Matrix



- Space:
- Time to list all vertices adjacent to u:
- Time to determine if (u,v) is an edge:

• What about weighted graphs?

- Input: Graph G = (V, E), either directed or undirected, and source vertex s is in V.
- Output:
 - d[v] = distance (smallest # of edges) from s to v, for all v in V. (or v.d)
 - π[v] = u such that (u,v) is last edge on shortest path s->v (or v.π = u)
- u is v's predecessor
- Set of edges {($\pi[v],v$): $v \neq s$ } forms a tree

Breadth-First Search

- Idea: Send a wave out from s.
 - First hits all vertices 1 edge from s.
 - From there, hits all vertices 2 edges from s.

• Etc.

• Use FIFO queue Q to maintain wavefront.

 v is in Q if and only if wave has hit v but has not come out of v yet

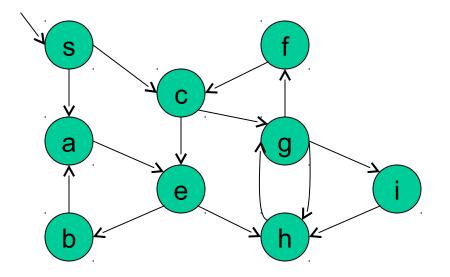
BFS(G, s)

p595

BFS(G, s)

1	for each vertex $u \in G.V - \{s\}$
2	u.color = WHITE
3	$u.d = \infty$
4	$u.\pi = \text{NIL}$
5	s.color = GRAY
6	s.d = 0
7	$s.\pi = \text{NIL}$
8	$Q = \emptyset$
9	ENQUEUE(Q, s)
10	while $Q \neq \emptyset$
11	u = DEQUEUE(Q)
12	for each $v \in G.Adj[u]$
13	if v.color == WHITE
14	v.color = GRAY
15	v.d = u.d + 1
16	$v.\pi = u$
17	ENQUEUE(Q, v)
18	u.color = BLACK

Example



Depth-First Search

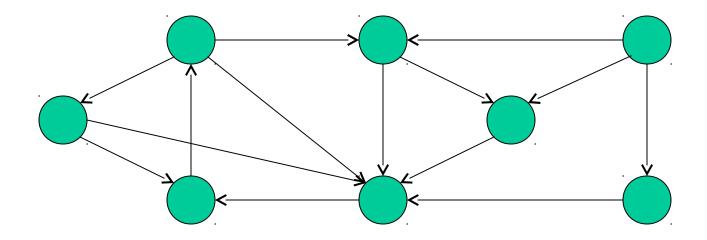
- Input: G = (V, E), directed or undirected. No source vertex given.
- Output: 2 timestamps on each vertex:
 - d[v] = discovery time
 - f[v] = finishing time
 - π[v] = u such that (u,v) is last edge on shortest path s->v

DFS(G)

DFS(G)for each $u \in G.V$ u.color = WHITEtime = 0for each $u \in G.V$ if *u*.color == WHITE DFS-VISIT(G, u)DFS-VISIT(G, u)time = time + 1u.d = time// discover u u.color = GRAYfor each $v \in G.Adj[u]$ *II* explore (u, v)if v. color == WHITEDFS-VISIT(ν) u.color = BLACKtime = time + 1u.f = time

 \parallel finish u

Example

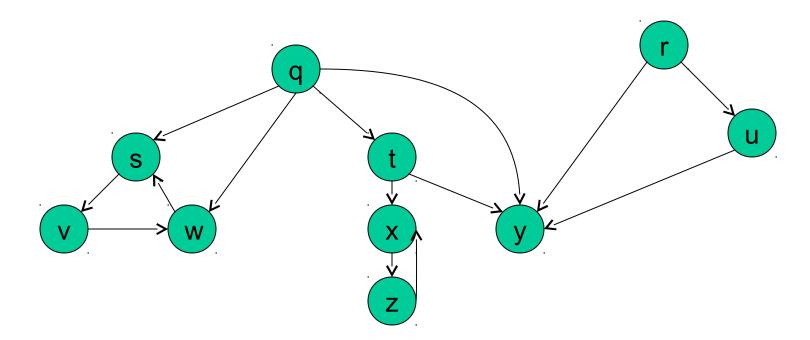


Depth-First Search

Running Time =

Your Turn

• Solve exercise 22.3-2 on page 547



Classification of Edges

- Tree edge:
- Back edge:
- Forward edge:
- Cross edge: