
1

Dynamic Programming

Chapter 15

11/06/13 CS380 Algorithm Design and Analysis

2

Dynamic Programming

• We can use the divide-and-conquer
technique to obtain efficient algorithms
o But not always

• Divide and Conquer is best used when there
are no overlapping subproblems

• Replace a function call with a table lookup!

11/06/13 CS380 Algorithm Design and Analysis

3

Fibonacci Numbers

• Fibonacci numbers are defined by the
following recurrence:

11/06/13 CS380 Algorithm Design and Analysis

Fn={
F n−1+F n−2 if n≥2

1 if n=1
0 if n=0 }

n 0 1 2 3 4 5 6 7 8 9 10 …

Fn 1 1 2 3 5 8 13 21 34 55 89 …

4

A Recursive Algorithm

int Fibonacci(int n)
{

if (n <= 1)
{
 return 1;
}
else
{
 return Fibonacci(n-1) +

Fibonacci(n-2);
}

}

11/06/13 CS380 Algorithm Design and Analysis

Why is this slow?

Can we do better?

What subproblems
are solved twice?

Can we build the
recursion tree?

5

Dynamic Programming

int fibonacci(int n)
{
 int table[];

}

6

Dynamic Programming

• Not really dynamic, not really programming

• Name is used for historical reasons

• “Mathematical Programming” - a synonym
for optimization.

11/06/13 CS380 Algorithm Design and Analysis

Memoization
Space vs Time

7

Dynamic Programming

• Solves each subproblem once and saves the
answer in a table

• Used to solve optimization problems
o Many possible solutions

o Wish to find a solution with the optimal value

11/06/1
3

CS380 Algorithm Design and Analysis

8

Four Steps for Dynamic Programming

• Characterize

• Recursively

• Compute

• Construct

11/06/13 CS380 Algorithm Design and Analysis

9

Rod Cutting

• A company buys long steel rods and cuts
them into shorter rods, which it then sells
o Each cut is free

• What cuts lead to the most money?

11/06/13 CS380 Algorithm Design and Analysis

10

Example

• How many ways can you cut a rod?

• What are the possible ways of cutting a rod
of length 4 (n = 4)?

• What is the best way?

11/06/13 CS380 Algorithm Design and Analysis

11

Initial Optimal Revenues

• Optimal revenues ri, by inspection:

11/06/1
3

CS380 Algorithm Design and Analysis

12

Optimal Revenues
• We can determine the optimal revenue rn by

taking the maximum of:

o pn: price by not cutting

o r1 + rn-1: maximum revenue for a rod of length 1
and a rod of length n-1

o r2 + rn-2: maximum revenue for a rod of length 2
and a rod of length n-2 ….

o rn-1 + r1

o rn = max(pn, r1 + rn-1, r2 + rn-2, …, rn-1 + r1)

11/06/13 CS380 Algorithm Design and Analysis

13

Simplifying

• Every optimal solution has a leftmost cut.

o produces i and n-i pieces. (i could be zero)
o Need to divide only the remainder, not the first

piece.

o Leaves only one subproblem to solve, rather than
two subproblems.

o Say that the solution with no cuts has first piece size
i = n with revenue pn, and remainder size 0 with
revenue r0 = 0.

11/06/1
3

CS380 Algorithm Design and Analysis

r n=max
1≤i≤n

(p i+rn−i)

14

Recursive Top-Down Solution

• Is it correct?

• Is it efficient?

11/06/1
3

CS380 Algorithm Design and Analysis

15

Dynamic-Programming Solution

• “Store, don’t recompute”

• Can turn an exponential-time solution to a
polynomial-time solution

• Two approaches:
o Top-down with memoization

o Bottom up

11/06/1
3

CS380 Algorithm Design and Analysis

16

Top-Down with Memoization

• Solve recursively, but store each result in a
table

• Always check the table
o If there, use it

o Otherwise, compute it and store in table

o each subproblem is computed exactly once

11/06/1
3

CS380 Algorithm Design and Analysis

17

Memoized Cut-Rod

11/06/13 CS380 Algorithm Design and Analysis

18

Bottom-Up

• Sort the subproblems by size and solve the
smaller ones first

11/06/13 CS380 Algorithm Design and Analysis

19

Subproblem graphs

• Directed Graph:
o One vertex for each distinct subproblem

o Has a directed edge (x, y) if computing an
optimal solution to subproblem x directly
requires knowing an optimal solution to
subproblem y

11/06/1
3

CS380 Algorithm Design and Analysis

20

Subproblem Graph for Rod-Cutting

• When n = 4:

11/06/1
3

CS380 Algorithm Design and Analysis

21

Reconstructing a Solution

• We have only computed the value of an
optimal solution

o i.e. When n = 4, rn = 10

• We still don’t know how to cut up the rod!

11/06/1
3

CS380 Algorithm Design and Analysis

22

Rod-Cutting

11/06/13 CS380 Algorithm Design and Analysis

23

Example

• PRINT-CUT-ROD-SOLUTION(p, 369)

11/06/1
3

CS380 Algorithm Design and Analysis

	Dynamic Programming
	Slide 2
	Fibonacci Numbers
	A Recursive Algorithm
	Slide 5
	Slide 6
	Slide 7
	Four Steps for Dynamic Programming
	Rod Cutting
	Example
	Initial Optimal Revenues
	Optimal Revenues
	Simplifying
	Recursive Top-Down Solution
	Dynamic-Programming Solution
	Top-Down with Memoization
	Memoized Cut-Rod
	Bottom-Up
	Subproblem graphs
	Subproblem Graph for Rod-Cutting
	Reconstructing a Solution
	Rod-Cutting
	Slide 23

