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Dynamic Programming

• We can use the divide-and-conquer 
technique to obtain efficient algorithms
o But not always

• Divide and Conquer is best used when there 
are no overlapping subproblems

• Replace a function call with a table lookup!
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Fibonacci Numbers

• Fibonacci numbers are defined by the 
following recurrence:
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Fn={
F n−1+F n−2 if n≥2

1 if n=1
0 if n=0 }

n 0 1 2 3 4 5 6 7 8 9 10 …

Fn 1 1 2 3 5 8 13 21 34 55 89 …
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A Recursive Algorithm

int Fibonacci(int n)
{

if ( n <= 1 )
{
  return 1;
}
else
{
  return Fibonacci(n-1) +

Fibonacci(n-2);
}

}
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Why is this slow?

Can we do better?

What subproblems
are solved twice?

Can we build the 
recursion tree?
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Dynamic Programming

int  fibonacci(int n)
{
   int table[     ];

}
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Dynamic Programming

• Not really dynamic, not really programming

• Name is used for historical reasons

• “Mathematical Programming” - a synonym 
for optimization.
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Memoization
Space vs Time
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Dynamic Programming

• Solves each subproblem once and saves the 
answer in a table

• Used to solve optimization problems
o Many possible solutions

o Wish to find a solution with the optimal value
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Four Steps for Dynamic Programming

• Characterize 

• Recursively 

• Compute 

• Construct 
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Rod Cutting

• A company buys long steel rods and cuts 
them into shorter rods, which it then sells
o Each cut is free

• What cuts lead to the most money?
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Example

• How many ways can you cut a rod?

• What are the possible ways of cutting a rod 
of length 4 (n = 4)?

• What is the best way?
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Initial Optimal Revenues

• Optimal revenues ri, by inspection:
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Optimal Revenues
• We can determine the optimal revenue rn by 

taking the maximum of:

o pn: price by not cutting

o r1 + rn-1: maximum revenue for a rod of length 1 
and a rod of length n-1

o r2 + rn-2: maximum revenue for a rod of length 2 
and a rod of length n-2   ….

o rn-1 + r1

o rn = max(pn, r1 + rn-1, r2 + rn-2, …, rn-1 + r1)
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Simplifying

• Every optimal solution has a leftmost cut.

o produces i and n-i pieces. (i could be zero)
o Need to divide only the remainder, not the first 

piece.

o Leaves only one subproblem to solve, rather than 
two subproblems.

o Say that the solution with no cuts has first piece size 
i = n with revenue pn, and remainder size 0 with 
revenue r0 = 0.
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r n=max
1≤i≤n

( p i+rn−i)
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Recursive Top-Down Solution

• Is it correct?

• Is it efficient?
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Dynamic-Programming Solution

• “Store, don’t recompute”

• Can turn an exponential-time solution to a 
polynomial-time solution

• Two approaches:
o Top-down with memoization

o Bottom up
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Top-Down with Memoization

• Solve recursively, but store each result in a 
table

• Always check the table
o If there, use it

o Otherwise, compute it and store in table

o each subproblem is computed exactly once
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Memoized Cut-Rod
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Bottom-Up

• Sort the subproblems by size and solve the 
smaller ones first
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Subproblem graphs

• Directed Graph:
o One vertex for each distinct subproblem

o Has a directed edge (x, y) if computing an 
optimal solution to subproblem x directly 
requires knowing an optimal solution to 
subproblem y
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Subproblem Graph for Rod-Cutting

• When n = 4:

11/06/1
3

CS380 Algorithm Design and Analysis



21

Reconstructing a Solution

• We have only computed the value of an 
optimal solution

o i.e. When n = 4, rn = 10

• We still don’t know how to cut up the rod!
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Rod-Cutting
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Example

• PRINT-CUT-ROD-SOLUTION(p, 369)
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