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Dynamic Programming

» We can use the divide-and-conquer
technique to obtain efficient algorithms

o But not always

» Divide and Conquer is best used when there
are no overlapping subproblems

* Replace a function call with a table lookup!
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Fibonacci Numbers

» Fibonacci numbers are defined by the
following recurrence:

f

\
F . +F ,itn=2

Fo=1 1 df n=1 |
0 if n=0
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A Recursive Algorithn

| nt

{

Why is this slow?
Can we do better?

What subproblems
are solved twice?

Can we build the
recursion tree?

Fi bonacci (i nt n)

if (n<=1)
{

return 1;

}

el se

{

return Fi bonacci(n-1) +
Fi bonacci (n-2);
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Dynamic Programming

int fibonacci(int n)

{
int table| I;




Dynamic Programming

* Not really dynamic, not really programming

« Name is used for historical reasons

» “Mathematical Programming” - a synonym
for optimization.

Space vs Time Memoization
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Dynamic Programming

» Solves each subproblem once and saves the
answer in a table

» Used to solve optimization problems
o Many possible solutions

o Wish to find a solution with the optimal value
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Four Steps for Dynamic Programming

« Characterize
* Recursively

- Compute

« Construct
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Rod Cutting

» A company buys long steel rods and cuts
them into shorter rods, which it then sells

o Each cut is free

» What cuts lead to the most money?

lengthi |1 2 3 4 5 6 7 8
price p; 5 8 9 10 17 17 20
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Example

- How many ways can you cut a rod?

- What are the possible ways of cutting a rod
of length 4 (n =4)?

* What is the best way?
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Initial Optin

- Optimal revenues r;,, by inspection:

al

Revenues

l r; optimal solution

1 1 1 (no cuts)

2 5 2 (no cuts)

3 8 3 (no cuts)

4 10 2+ 2

5 13 2+3

6 17 6 (no cuts)

7 18 l+60r2+2+43
8 22 2+ 6
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Optimal Revenues

- We can determine the optimal revenue r, by
taking the maximum of:

o pn: price by not cutting

o ry + r,..: maximum revenue for a rod of length 1
and a rod of length n-1

0 Iy, + . maximum revenue for a rod of length 2
and a rod of length n-2

O I 1y

0 Iy =max(Pn, M+ Fogy M2+ Mgy vy o 1y
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Simplifying

» Every optimal solution has a leftmost cut.

o produces | and n-i pieces. (i could be zero)

o Need to divide only the remainder, not the first
piece.

o Leaves only one subproblem to solve, rather than
two subproblems.

o Say that the solution with no cuts has first piece size
| = n with revenue p,, and remainder size 0 with
revenue r, = 0.

r = maX(pi+rn_i)

1<i<nm

11/06/1 CS380 Algorithm Design and Analysis 13



Recursive Top-Down Solution

CUT-ROD(p, n)

iHn==
return 0

q = —o0

fori = 1ton

g = max(q, pli] + CUT-ROD(p,n —i))
return g

Is it correct?

Is it efficient?
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Dynamic-Programming Solution

- “Store, don’t recompute”

« Can turn an exponential-time solution to a
polynomial-time solution

* Two approaches:
o Top-down with memoization

o Bottom up

11/06/1 CS380 Algorithm Design and Analysis 15



Top-Down with Memoization

* Solve recursively, but store each result in a
table

» Always check the table
o If there, use it
o Otherwise, compute it and store in table

o each subproblem is computed exactly once
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Memoized Cut-Rod

MEMOIZED-CUT-ROD(p, n)

let 7[0..n] be a new array
fori =0ton
rli] = —oo
return MEMOIZED-CUT-ROD-AUX(p, n, 1)

MEMOIZED-CUT-ROD-AUX (p,n,r)

if r[n] >0

return r[n]
ifn ==

g =20
else g = —o0

fori = 1ton

g = max(q, pli] + MEMOIZED-CUT-ROD-AUX(p,n —i,r))

rln] = q
return g
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Bottom-Up

» Sort the subproblems by size and solve the
smaller ones first

BoTTOM-UP-CUT-ROD(p, n)

let [0..n] be a new array
r(0] =0
for j = 1ton
g = —o0
fori = 1toj
g = max(q, pli] +r[j —i])
rljl =4
return r[n]
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Subproblem graphs

* Directed Graph:
o One vertex for each distinct subproblem

o Has a directed edge (X, y) if computing an
optimal solution to subproblem x directly
requires knowing an optimal solution to
subproblem y
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Subproblem Graph for Rod-Cutting

* When n=4:
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Reconstructing a Solution

- We have only computed the value of an
optimal solution

ol.e.Whenn=4,r,=10

» We still don’'t know how to cut up the rod!
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Rod-Cutting

EXTENDED-BOTTOM-UP-CUT-ROD(p, 1)

let r[0..n] and s[0. . n] be new arrays

r[0] =0

for j = 1ton
q = —00
fori =1toj

ifg < pli] +r[j —i]
q = pli] +rlj —i]
s[jl =i
rljl =q
return r and s

Saves the first cut made in an optimal solution for a problem of size i in s[i].

To print out the cuts made in an optimal solution:

PRINT-CUT-ROD-SOLUTION (p, 1)

(r,s) = EXTENDED-BOTTOM-UP-CUT-ROD(p, 1)
while » > 0

print s[n]

n=n-—sn
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Example

» PRINT-CUT-ROD-SOLUTION(p, 369)
i 0123 4 5 6 7 8
ri]/0 1 5 8 10 13 17 18 22
si]lo1 23 2 2 6 1 2
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