Red-Black Trees

Chapters 13

10/21/13 CS380 Algorithm Design and Analysis



Binary Search Trees Review




Balanced Trees

- Why do we want to balance trees?

Red-Black Trees are an example of
balanced trees

Other balanced trees:
o AVL trees
o B-trees

o 2-3 trees

10/21/13 CS380 Algorithm Design and Analysis



Red-Black Tree

- BST data structure with extra color field for
each node, satisfying the red-black
properties:

1. Every node is either red or black.

2. The root is black.

3. Every leaf is black.

4. If a node is red, both children are black.

5. Every path from node to descendent leaf
contain the same number of black nodes.

10/21/13 CS380 Algorithm Design and Analysis



Example

* Attributes of nodes:
o key
o left
o right
o p (parent)

o color

* Note the use of the sentinel T.nil
o Parent of the root is T.nil

o All leaves are T.nil — no data in the leaves!

10/21/13 CS380 Algorithm Design and Analysis



Properties of RB-Trees

- Black-height of a node:

o Number of black nodes on any simple path from,
but not including, a node x down to a leaf

* A red-black tree with n internal nodes has
height at most 2lg(n+1)

10/21/13 CS380 Algorithm Design and Analysis 6



Rotations

» Why are rotations necessary in red-black
trees”?

* How are rotations performed?

* What is the running time of rotation?

10/21/13 CS380 Algorithm Design and Analysis



Example

» Color this tree

* |Insert 8
* |Insert 11
* |Insert 10

Properties of RB-Trees

Every node is either red or black.

The root is black.

Every leaf is black.

If a node is red, both children are black.

Every path from node to descendent leaf contain the same number of
black nodes.

aRrwbD -~

10/21/13 CS380 Algorithm Design and Analysis 8



Left-Rotate

LEFT-ROTATE(T. x)

v = x.right / sety
x.right = y.left // turn y’s left subtree into x’s right subtree
if y.left # T.nil
y.left.p = x
Y. =x.p // link x’s parent to y
if x.p==T.nil
T.root =y
elseif x == x.p.left
x.pleft =y
else x.p.right = vy
yv.left = x // put x on y’s left
X pi=y

10/21/13 CS380 Algorithm Design and Analysis 9



Example

* Rotate left about 9

10/21/13 CS380 Algorithm Design and Analysis

10



Inserting into a RB-Tree

 This is regular binary
search tree insertion

* Which RB-Tree property
could have been violated?

Properties of RB-Trees

Every node is either red or black.

The root is black.

Every leaf is black.

If a node is red, both children are black.
Every path from node to descendent leaf
contain the same number of black nodes.

aRrwbD -~

RB-INSERT(T, 2)

Y= 1. nil
Xi= I .root
while x # T.nil
i
if Z.key < x.key
x = x.left
else x = x.right
Zop=Y
if v ==T.nil
T =
elseif z.key < v.key
y.left = z

else y.right = ¢

z.left = T.nil

z.right = T.nil

Z.color = RED
RB-INSERT-FIXUP(T, 2)

10/21/13 CS380 Algorithm Design and Analysis 11



RB-Insert-Fixup

RB-INSERT-FIXUP(T, 2)
while Z.p.color == RED
ik z.p==z.p.p.left
y =-Z.p.p.richt
if y.color == RED

z.p.color = BLACK // case 1
y.color = BLACK // case 1
z.p.p.color = RED // case 1
Z = Z.p.p // case 1
elseif z == z.p.right

L — // case 2

LEFT-ROTATE(T. 2) [/ case 2
z.p.color = BLACK // case 3
z.p.p.color = RED // case 3
RIGHT-ROTATE(T, z.p.p) // case 3

else (same as then clause with “right” and “left” exchanged)
T.root.color = BLACK

10/21/13 CS380 Algorithm Design and Analysis 12



Cases

Case 1: y isred

2'. ¥ 0 £

€t f If z is a left child

10/21/13 CS380 Algorithm Design and Analysis



Cases

Case 2: y is black, z is a right child Case 3: y is black, z is a left child

10/21/13 CS380 Algorithm Design and Analysis 14



Example

* Insert 10

10/21/13

CS380 Algorithm Design and Analysis

15



Example

* Insert 15

3 D
19 (22

8) ()
D

26

10/21/13

CS380 Algorithm Design and Analysis

16



Delete BST, p 295 - 298

- BST:
delete x, 3 cases:

o X has no children

o x has 1 child

o X has 2 children

* helper function transplant(T, u, v)

0]

17



p 295

BST- Transplant(T, u, v)

p 323

if u.p == NIL

RB-Transplant(T, u, v)

T.root=v

if u.p == T.NIL

elseif u == u.p.left

T.root=v

u.p.left=v

elseif u == u.p.left

else u.p.right=v

u.p.left=v

if v I= Nil

else u.p.right =v

N o ok 0N -

V.p = u.p

O O~ WOWIN -

V.p = u.p

18



Delete, RB Tree, p 323

* RB-Transplant
+ RB-Delete
* RB-DeleteFixup

19



p324

RB-DELETE(T, z

y =z
y-original-color = y.color
if z.left == T.nil
X = z.right
RB-TRANSPLANT(T, z, z.right)
elseif z.right == T . nil
X = . left
RB-TRANSPLANT(T, z, z.left)
else y = TREE-MINIMUM (Z.right)
y-original-color = y.color

X = y.right
if y.p==2
xX.p =Yy

else RB-TRANSPLANT(T, y, y.right
y.right = z.right
y.right.p =y

RB-TRANSPLANT(7,z, V)

y.left = z.left

v.ieftp =y

y.color = z.color

if v-original-color == BLACK
RB-DELETE-FIXUP(T, x)



RB-DELETE-FIXUP(T, x
p326 while x = T.root and x.color == BLACK
if x == x.p.left
w = x.p.right
if w.color == RED
w.color = BLACK // case 1
X.p.color = RED // case 1
LEFT-ROTATE (T, x.p) // case 1
w = x.p.right // case 1
if w.left.color == BLACK and w.right.color == BLACK
w.color = RED // case
X =x.p // case
else if w.right.color == BLACK
w.left.color = BLACK // case
w.color = RED // case
RIGHT-ROTATE(T, w) // case
w = X.p.right // case
w.color = x.p.color // case 4
x.p.color = BLACK // case 4
w.right.color = BLACK // case 4
LEFT-ROTATE (T, x.p) // case 4
x = T.root // case 4
else (same as then clause with “right” and “left” exchanged)
oy = BLACK



Examples

Delete each of these
from the original

Delete 26
Delete 22

Delete 10

Delete 18

Delete 3

10/21/13 CS380 Algorithm Design and Analysis 22



Notes

23



	Red-Black Trees
	Slide 2
	Balanced Trees
	Red-Black Tree
	Example
	Properties of RB-Trees
	Rotations
	Slide 8
	Left-Rotate
	Slide 10
	Inserting into a RB-Tree
	RB-Insert-Fixup
	Cases
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 23

