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Quicksort

Chapter 7

09/23/13 CS380 Algorithm Design and Analysis



2

Sorting

• What’s the running time for:
o Insertion Sort

o Merge Sort

o Heapsort

• Which of these algorithms sort in place?
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Quicksort

• The Basic version of quicksort was invented 
by C. A. R. Hoare in 1960

• Divide and Conquer algorithm

• In practice, it is the fastest in-place sorting 
algorithm
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Divide and Conquer

• Divide: Partition the array into two subarrays 
around a pivot x such that elements to the 
left are <= x and elements to the right are >= 
x

• Conquer: Recursively sort the two subarrays

• Combine: Trivial!

Key?

09/23/13 CS380 Algorithm Design and Analysis

           ≤ x           ≤ x ≥xX

Good 
Partitioning 
Subroutine!
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Quicksort Pseudocode p171

QUICKSORT(A, p, r)

• What’s the call to sort the entire array?
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Quicksort(A, p, r) // A:Array; p,r: integer indexes

1 if p < r

2   q = Partition(A, p, r);

3   Quicksort(A, p, q-1);

4   Quicksort(A, q+1, r);
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Partitioning the Array p 171

PARTITION(A, p, r)
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Partition(A,p,r) // A:Array; p,r: integer indexes

1 x = A[r]

2 i = p - 1

3 for j = p to r-1

4   if A[j] <= x

5     i = i + 1

6     swap(A[i], A[j])

7 swap (A[i+1], A[r])

8 return i+1

Many partition functions possible. p 179, 185
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Correctness of Partition

• During the execution of PARTITION there 
are four distinct sections of the array:
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x

p ri j

≤ x > x unknown
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1 2 3 4 5 6 7 8

5 3 9 1 8 2 4 7

1 2 3 4 5 6 7 8

5 3 9 1 8 2 4 7

Example
1 2 3 4 5 6 7 8

5 3 9 1 8 2 4 7
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p r

1 2 3 4 5 6 7 8

5 3 9 1 8 2 4 7
p r

7
x

i j

1 2 3 4 5 6 7 8

5 3 9 1 8 2 4 7

p r
i j

1 2 3 4 5 6 7 8

5 3 9 1 8 2 4 7

p r
i j

1 2 3 4 5 6 7 8

5 3 9 1 8 2 4 7
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Example
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1 2 3 4 5 6 7 8

5 3 9 1 8 2 4 7

1 2 3 4 5 6 7 8

5 3 9 1 8 2 4 7
p r

i j

1 2 3 4 5 6 7 8

5 3 9 1 8 2 4 7

7
x

1 2 3 4 5 6 7 8

5 3 1 9 8 2 4 7

i j
p r

1 2 3 4 5 6 7 8

5 3 1 9 8 2 4 7

1 2 3 4 5 6 7 8

5 3 1 9 8 2 4 7

1 2 3 4 5 6 7 8

5 3 1 2 4 9 8 7

i j
p r

1 2 3 4 5 6 7 8

5 3 1 2 4 7 8 9

ip r

Return the 
location of pivot
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Exercise - Partition the Following

44 75 23 43 55 12 64 77 33 41
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Analysis of Partition

• What is the running time of PARTITION?
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Partition(A,p,r) // A:Array; p,r: integer indexes

1 x = A[r]

2 i = p - 1

3 for j = p to r-1

4   if A[j] <= x

5     i = i + 1

6     swap(A[i], A[j])

7 swap (A[i+1], A[r])

8 return i+1
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Quicksort in Action
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Exercise
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• Sort the following array using quicksort

3 4 2 5 1
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Performance of Quicksort

• What does the performance of quicksort 
depend on?

• What would give us the best case?
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Best Case of Quicksort
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Worst Case of Quick Sort
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Average Case Analysis

• Let’s look at this by intuition

• Running quicksort on a random array is 
likely to produce a mix of balanced and 
unbalanced partitions

• It has been shown that 80% of the time 
partition produces good splits and 20% of 
the time it produces bad splits
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Assume 9-1 split, p 176

• Assume each partition is a 9 to 1 split.
o constant proportionality

• What is the recurrence?
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Fig 7.4 What does the recursion tree look like (9-1 split)?
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Average Case Analysis

• This is really no different than:
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n

n - 1

( (n -1) / 2 ) - 1 (n - 1) / 2

n

(n - 1) / 2 (n - 1) / 2

• Thus, the O(n -1) of the bad split can be 
absorbed into the O(n) of the good split
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Average Case Analysis

• The running time of quicksort when 
alternating good and bad splits is like the 
running time for good splits alone

• O(n lg n) but with a slightly larger constant 
hidden by the O-notation
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Random Partition, p 179

Randomized-Partition(A, p, r)

1 i = RANDOM(p,r)

2 swap (A[r], A[i])

3 return PARTITION(A, p, r)
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Hoare Partition, p 185

HoareParition(A,p,r)

1 x = A[p]

2 i = p -1

3 j = r + 1

4 while TRUE

5    do

6       j=j-1

7    while(A[j] > x) 

8    do

9      i = i+1

10    while( A[i] < x)

11    if ( i < j)

12       swap (A[i], A[j])

13    else return j
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