Quicksort

Chapter 7

Sorting

- What's the running time for:
 - Insertion Sort
 - Merge Sort
 - Heapsort
- Which of these algorithms sort in place?

Quicksort

- The Basic version of quicksort was invented by C. A. R. Hoare in 1960
- Divide and Conquer algorithm
- In practice, it is the fastest in-place sorting algorithm

Divide and Conquer

 Divide: Partition the array into two subarrays around a pivot x such that elements to the left are <= x and elements to the right are >=

Χ

- Conquer: Recursively sort the two subarrays
- Combine: Trivial!

Quicksort Pseudocode p171

QUICKSORT(A, p, r)

```
Quicksort(A, p, r) // A:Array; p,r: integer indexes
if p < r
q = Partition(A, p, r);
Quicksort(A, p, q-1);
Quicksort(A, q+1, r);
```

• What's the call to sort the entire array?

Partitioning the Array p 171

PARTITION(A, p, r)

	Partition(A,p,r) // A:Array; p,r: integer indexes
1	$\mathbf{x} = \mathbf{A}[\mathbf{r}]$
2	i = p - 1
3	for $j = p$ to $r-1$
4	if A[j] <= x
5	i = i + 1
6	<pre>swap(A[i], A[j])</pre>
7	swap (A[i+1], A[r])
8	return i+1

Many partition functions possible. p 179, 185

Correctness of Partition

 During the execution of PARTITION there are four distinct sections of the array:

Example

Example

7 Х

09/23/13

CS380 Algorithm Design and Analysis

Exercise - Partition the Following

44	75	23	43	55	12	64	77	33	41	
----	----	----	----	----	----	----	----	----	----	--

Analysis of Partition

• What is the running time of PARTITION?

	Partition(A,p,r) // A:Array; p,r: integer indexes
1	$\mathbf{x} = \mathbf{A}[\mathbf{r}]$
2	i = p - 1
3	for $j = p$ to $r-1$
4	if A[j] <= x
5	i = i + 1
6	<pre>swap(A[i], A[j])</pre>
7	swap (A[i+1], A[r])
8	return i+1

Quicksort in Action

Exercise

Sort the following array using quicksort

3	4	2	5	1
---	---	---	---	---

Performance of Quicksort

- What does the performance of quicksort depend on?
- What would give us the best case?

Best Case of Quicksort

Worst Case of Quick Sort

Average Case Analysis

- Let's look at this by intuition
- Running quicksort on a random array is likely to produce a mix of balanced and unbalanced partitions
- It has been shown that 80% of the time partition produces good splits and 20% of the time it produces bad splits

Assume 9-1 split, p 176

- Assume each partition is a 9 to 1 split.
 - constant proportionality
- What is the recurrence?

Fig 7.4 What does the recursion tree look like (9-1 split)?

Average Case Analysis

n	
n - 1	
((n -1) / 2) - 1 (n - 1) / 2	

• This is really no different than:

 Thus, the O(n -1) of the bad split can be absorbed into the O(n) of the good split

Average Case Analysis

- The running time of quicksort when alternating good and bad splits is like the running time for good splits alone
- O(n lg n) but with a slightly larger constant hidden by the O-notation

Random Partition, p 179

	Randomized-Partition(A, p, r)
1	i = RANDOM(p,r)
2	<pre>swap (A[r], A[i])</pre>
3	return PARTITION(A, p, r)

Hoare Partition, p 185

	HoareParition(A,p,r)
1	x = A[p]
2	i = p -1
3	j = r + 1
4	while TRUE
5	do
6	j=j-1
7	while(A[j] > x)
8	do
9	i = i+1
10	while($A[i] < x$)
11	if (i < j)
12	swap (A[i], A[j])
13	else return j