
1

Quicksort

Chapter 7

09/23/13 CS380 Algorithm Design and Analysis

2

Sorting

• What’s the running time for:
o Insertion Sort

o Merge Sort

o Heapsort

• Which of these algorithms sort in place?

09/23/13 CS380 Algorithm Design and Analysis

3

Quicksort

• The Basic version of quicksort was invented
by C. A. R. Hoare in 1960

• Divide and Conquer algorithm

• In practice, it is the fastest in-place sorting
algorithm

09/23/13 CS380 Algorithm Design and Analysis

4

Divide and Conquer

• Divide: Partition the array into two subarrays
around a pivot x such that elements to the
left are <= x and elements to the right are >=
x

• Conquer: Recursively sort the two subarrays

• Combine: Trivial!

Key?

09/23/13 CS380 Algorithm Design and Analysis

 ≤ x ≤ x ≥xX

Good
Partitioning
Subroutine!

5

Quicksort Pseudocode p171

QUICKSORT(A, p, r)

• What’s the call to sort the entire array?

09/23/13 CS380 Algorithm Design and Analysis

Quicksort(A, p, r) // A:Array; p,r: integer indexes

1 if p < r

2 q = Partition(A, p, r);

3 Quicksort(A, p, q-1);

4 Quicksort(A, q+1, r);

6

Partitioning the Array p 171

PARTITION(A, p, r)

09/23/13 CS380 Algorithm Design and Analysis

Partition(A,p,r) // A:Array; p,r: integer indexes

1 x = A[r]

2 i = p - 1

3 for j = p to r-1

4 if A[j] <= x

5 i = i + 1

6 swap(A[i], A[j])

7 swap (A[i+1], A[r])

8 return i+1

Many partition functions possible. p 179, 185

7

Correctness of Partition

• During the execution of PARTITION there
are four distinct sections of the array:

09/23/13 CS380 Algorithm Design and Analysis

x

p ri j

≤ x > x unknown

8

1 2 3 4 5 6 7 8

5 3 9 1 8 2 4 7

1 2 3 4 5 6 7 8

5 3 9 1 8 2 4 7

Example
1 2 3 4 5 6 7 8

5 3 9 1 8 2 4 7

09/23/13 CS380 Algorithm Design and Analysis

p r

1 2 3 4 5 6 7 8

5 3 9 1 8 2 4 7
p r

7
x

i j

1 2 3 4 5 6 7 8

5 3 9 1 8 2 4 7

p r
i j

1 2 3 4 5 6 7 8

5 3 9 1 8 2 4 7

p r
i j

1 2 3 4 5 6 7 8

5 3 9 1 8 2 4 7

9

Example

09/23/13 CS380 Algorithm Design and Analysis

1 2 3 4 5 6 7 8

5 3 9 1 8 2 4 7

1 2 3 4 5 6 7 8

5 3 9 1 8 2 4 7
p r

i j

1 2 3 4 5 6 7 8

5 3 9 1 8 2 4 7

7
x

1 2 3 4 5 6 7 8

5 3 1 9 8 2 4 7

i j
p r

1 2 3 4 5 6 7 8

5 3 1 9 8 2 4 7

1 2 3 4 5 6 7 8

5 3 1 9 8 2 4 7

1 2 3 4 5 6 7 8

5 3 1 2 4 9 8 7

i j
p r

1 2 3 4 5 6 7 8

5 3 1 2 4 7 8 9

ip r

Return the
location of pivot

10

Exercise - Partition the Following

44 75 23 43 55 12 64 77 33 41

09/23/13 CS380 Algorithm Design and Analysis

11

Analysis of Partition

• What is the running time of PARTITION?

09/23/13 CS380 Algorithm Design and Analysis

Partition(A,p,r) // A:Array; p,r: integer indexes

1 x = A[r]

2 i = p - 1

3 for j = p to r-1

4 if A[j] <= x

5 i = i + 1

6 swap(A[i], A[j])

7 swap (A[i+1], A[r])

8 return i+1

12

Quicksort in Action

09/23/13 CS380 Algorithm Design and Analysis

13

Exercise

09/23/13 CS380 Algorithm Design and Analysis

• Sort the following array using quicksort

3 4 2 5 1

14

Performance of Quicksort

• What does the performance of quicksort
depend on?

• What would give us the best case?

09/23/13 CS380 Algorithm Design and Analysis

15

Best Case of Quicksort

09/23/13 CS380 Algorithm Design and Analysis

16

Worst Case of Quick Sort

09/23/13 CS380 Algorithm Design and Analysis

17

Average Case Analysis

• Let’s look at this by intuition

• Running quicksort on a random array is
likely to produce a mix of balanced and
unbalanced partitions

• It has been shown that 80% of the time
partition produces good splits and 20% of
the time it produces bad splits

09/23/13 CS380 Algorithm Design and Analysis

18

Assume 9-1 split, p 176

• Assume each partition is a 9 to 1 split.
o constant proportionality

• What is the recurrence?

19

Fig 7.4 What does the recursion tree look like (9-1 split)?

20

Average Case Analysis

• This is really no different than:

09/23/13 CS380 Algorithm Design and Analysis

n

n - 1

((n -1) / 2) - 1 (n - 1) / 2

n

(n - 1) / 2 (n - 1) / 2

• Thus, the O(n -1) of the bad split can be
absorbed into the O(n) of the good split

21

Average Case Analysis

• The running time of quicksort when
alternating good and bad splits is like the
running time for good splits alone

• O(n lg n) but with a slightly larger constant
hidden by the O-notation

09/23/13 CS380 Algorithm Design and Analysis

22

Random Partition, p 179

Randomized-Partition(A, p, r)

1 i = RANDOM(p,r)

2 swap (A[r], A[i])

3 return PARTITION(A, p, r)

23

Hoare Partition, p 185

HoareParition(A,p,r)

1 x = A[p]

2 i = p -1

3 j = r + 1

4 while TRUE

5 do

6 j=j-1

7 while(A[j] > x)

8 do

9 i = i+1

10 while(A[i] < x)

11 if (i < j)

12 swap (A[i], A[j])

13 else return j

	Quicksort
	Sorting
	Slide 3
	Divide and Conquer
	Quicksort Pseudocode
	Partitioning the Array
	Example
	Slide 9
	Exercise - Partition the Following
	Analysis of Partition
	Quicksort in Action
	Exercise
	Performance of Quicksort
	Best Case of Quicksort
	Worst Case of Quick Sort
	Average Case Analysis
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

