Quicksort

Chapter 7
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Sorting

* What's the running time for:
o |nsertion Sort
o Merge Sort

o Heapsort

* Which of these algorithms sort in place?
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Quicksort

» The Basic version of quicksort was invented
by C. A. R. Hoare in 1960

* Divide and Conquer algorithm

* In practice, it is the fastest in-place sorting
algorithm
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Divide and Conquer

» Divide: Partition the array into two subarrays
around a pivot x such that elements to the
left are <= x and elements to the right are >=
X

< X X >X

« Conqguer: Recursively sort the two subarrays

 Combine: Triviall Good

Key? Partitioning
Subroutine!
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Quicksort Pseudocode p171

QUICKSORT(A, p, r)

Quicksort(A, p, r) // A:Array; p,r: integer indexes
if p<r

q = Partition(A, p, r);

Quicksort (A, p, g-1);

Quicksort(A, g+l, r);

= W N BB

» What's the call to sort the entire array?
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Partitioning the Array p 171

PARTITION(A, p, r)

Partition(A,p,r) // A:Array; p,r: integer indexes
x = A[r]
i=p-1
for j = p to r-1
if A[j] <= x

i=1+1

swap (A[i], A[3])
swap (A[i+1], A[r])

00 J o 00 & W NN R

return i+l

Many partition functions possible. p 179, 185
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Correctness of Partition

* During the execution of PARTITION there
are four distinct sections of the array:

< X > X unknown

A A A
[ y/ y/ 1
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Return the
location of pivot
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Exercise - Partition the Following

44 | 75 | 23 | 43 | 55 | 12 | 64 | 77 | 33 | 41
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Ana

* What is the running time of PARTITION?

lysis of Partition

Partition(A,p,r) // A:Array; p,r: integer indexes

x = A[r]

i=p-1

for j = p to r-1

if A[3] <= x

i=1+1

swap (A[i], A[J])

swap (A[i+1], A[r])

00 Jd o 00 x W N K

return i+l
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Quicksort in Action

F
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Exercise

» Sort the following array using quicksort

3 4 2 5 1
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Performance of Quicksort

- What does the performance of quicksort
depend on?

- What would give us the best case?
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Best Case of Quicksort

ﬁ
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Worst Case of Quick Sort

ﬁ
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Average Case Analysis

» Let's look at this by intuition

* Running quicksort on a random array is
likely to produce a mix of balanced and
unbalanced partitions

* It has been shown that 80% of the time
partition produces good splits and 20% of
the time it produces bad splits
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Assume 9-1 split, p 176

* Assume each partition is a 9 to 1 split.

o constant proportionality

 What is the recurrence?
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Fig 7.4
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What does the recursion tree look like (9-1 split)?
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Average Case Analysis

ﬁ

n -

1

((nN-1)/2)-1

(n-1)/2

 Thisis realli no different than:

(n-1)/2

(n-1)/2

* Thus, the O(n -1) of the bad split can be
absorbed into the O(n) of the good split
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Average Case Analysis

* The running time of quicksort when
alternating good and bad splits is like the
running time for good splits alone

* O(n Ig n) but with a slightly larger constant
hidden by the O-notation
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Randon

Partition, p 179

Randomized-Partition(A, p, r)
i = RANDOM(p, r)

swap (A[r], A[i])

return PARTITION(A, p, r)
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Hoare Partition, p 185

HoareParition(A,p,r)
x = Alp]

i=p-1

j=r+1

while TRUE

© 00 N O OO b WO N -

RN
o

do

j=j-1
while(A[j] > x)
do

i = i+1

while( A[i] < x)

A
NN =

RN
w

if (1<)
swap (Ali], Ali])
else return j

23



	Quicksort
	Sorting
	Slide 3
	Divide and Conquer
	Quicksort Pseudocode
	Partitioning the Array
	Example
	Slide 9
	Exercise - Partition the Following
	Analysis of Partition
	Quicksort in Action
	Exercise
	Performance of Quicksort
	Best Case of Quicksort
	Worst Case of Quick Sort
	Average Case Analysis
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

