Quicksort

Chapter 7

09/23/13 CS380 Algorithm Design and Analysis

Sorting

* What's the running time for:
o |nsertion Sort
o Merge Sort

o Heapsort

* Which of these algorithms sort in place?

09/23/13 CS380 Algorithm Design and Analysis

Quicksort

» The Basic version of quicksort was invented
by C. A. R. Hoare in 1960

* Divide and Conquer algorithm

* In practice, it is the fastest in-place sorting
algorithm

09/23/13 CS380 Algorithm Design and Analysis 3

Divide and Conquer

» Divide: Partition the array into two subarrays
around a pivot x such that elements to the
left are <= x and elements to the right are >=
X

< X X >X

« Conqguer: Recursively sort the two subarrays

 Combine: Triviall Good

Key? Partitioning
Subroutine!

09/23/13 CS380 Algorithm Design and Analysis 4

Quicksort Pseudocode p171

QUICKSORT(A, p, r)

Quicksort(A, p, r) // A:Array; p,r: integer indexes
if p<r

q = Partition(A, p, r);

Quicksort (A, p, g-1);

Quicksort(A, g+l, r);

= W N BB

» What's the call to sort the entire array?

09/23/13 CS380 Algorithm Design and Analysis

Partitioning the Array p 171

PARTITION(A, p, r)

Partition(A,p,r) // A:Array; p,r: integer indexes
x = A[r]
i=p-1
for j = p to r-1
if A[j] <= x

i=1+1

swap (A[i], A[3])
swap (A[i+1], A[r])

00 J o 00 & W NN R

return i+l

Many partition functions possible. p 179, 185

09/23/13 CS380 Algorithm Design and Analysis

Correctness of Partition

* During the execution of PARTITION there
are four distinct sections of the array:

< X > X unknown

A A A
[y/ y/ 1

09/23/13 CS380 Algorithm Design and Analysis

1 2 3 4 5 6 7 8
S) 3 9 1 8 2 4 14
P r
1 2 3 4 5 6 7 8
S 3 9 1 8 2 4 14
P r
' J

-_—
N
w
=N
o
o
~
(o]

09/23/13 CS380 Algorithm Design and Analysis

5 1 8 2 4 7
P _ r
J
1 4 5 6 7 8
5 9 8 2 4 7
P _ r
Jl
\"4
1 3 4 5 6 7 8
5 2 4 9 8 7
: I .r
P | J
1 3 4 5 6 7 8
5 1 2 4 7 8 9
P i r

Return the
location of pivot

09/23/13

CS380 Algorithm Design and Analysis

9

Exercise - Partition the Following

44 | 75 | 23 | 43 | 55 | 12 | 64 | 77 | 33 | 41

09/23/13 CS380 Algorithm Design and Analysis

Ana

* What is the running time of PARTITION?

lysis of Partition

Partition(A,p,r) // A:Array; p,r: integer indexes

x = A[r]

i=p-1

for j = p to r-1

if A[3] <= x

i=1+1

swap (A[i], A[J])

swap (A[i+1], A[r])

00 Jd o 00 x W N K

return i+l

09/23/13

CS380 Algorithm Design and Analysis

11

Quicksort in Action

F

09/23/13 CS380 Algorithm Design and Analysis

12

Exercise

» Sort the following array using quicksort

3 4 2 5 1

09/23/13 CS380 Algorithm Design and Analysis

Performance of Quicksort

- What does the performance of quicksort
depend on?

- What would give us the best case?

09/23/13 CS380 Algorithm Design and Analysis 14

Best Case of Quicksort

ﬁ

09/23/13 CS380 Algorithm Design and Analysis

15

Worst Case of Quick Sort

ﬁ

09/23/13 CS380 Algorithm Design and Analysis

16

Average Case Analysis

» Let's look at this by intuition

* Running quicksort on a random array is
likely to produce a mix of balanced and
unbalanced partitions

* It has been shown that 80% of the time
partition produces good splits and 20% of
the time it produces bad splits

09/23/13 CS380 Algorithm Design and Analysis

17

Assume 9-1 split, p 176

* Assume each partition is a 9 to 1 split.

o constant proportionality

 What is the recurrence?

18

Fig 7.4

log

l0g,0/9 7

What does the recursion tree look like (9-1 split)?

/ n {llllllll ll !Il C”
1 9 .
10 H 10 Jl ionsssmassssssasssssssnssssssnssssass in- Ch
9 9 81
100 In 100 n 100 1 sesssssssssssssssssssnsas I Ch
T A S :
1000 " Tooo " e cn
4% f %
---------- il <_;' cCn
X
| L in- < cn

O(nlen)

Average Case Analysis

ﬁ

n -

1

((nN-1)/2)-1

(n-1)/2

 Thisis realli no different than:

(n-1)/2

(n-1)/2

* Thus, the O(n -1) of the bad split can be
absorbed into the O(n) of the good split

09/23/13

CS380 Algorithm Design and Analysis 20

Average Case Analysis

* The running time of quicksort when
alternating good and bad splits is like the
running time for good splits alone

* O(n Ig n) but with a slightly larger constant
hidden by the O-notation

09/23/13 CS380 Algorithm Design and Analysis 21

Randon

Partition, p 179

Randomized-Partition(A, p, r)
i = RANDOM(p, r)

swap (A[r], A[i])

return PARTITION(A, p, r)

22

Hoare Partition, p 185

HoareParition(A,p,r)
x = Alp]

i=p-1

j=r+1

while TRUE

© 00 N O OO b WO N -

RN
o

do

j=j-1
while(A[j] > x)
do

i = i+1

while(A[i] < x)

A
NN =

RN
w

if (1<)
swap (Ali], Ali])
else return j

23

	Quicksort
	Sorting
	Slide 3
	Divide and Conquer
	Quicksort Pseudocode
	Partitioning the Array
	Example
	Slide 9
	Exercise - Partition the Following
	Analysis of Partition
	Quicksort in Action
	Exercise
	Performance of Quicksort
	Best Case of Quicksort
	Worst Case of Quick Sort
	Average Case Analysis
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

