
1CS380 Algorithm Design and Analysis

Recurrence Relations – Running
Time for Recursive Functions

Chapter 2

09/05/13

2

Gnome Sort - trivia

09/05/1
3

CS380 Algorithm Design and Analysis

http://www.portlandoctopus.com/top-5-garden-gnomes/

3

Divide and Conquer Algorithms

• Analysis of divide and conquer algorithms
requires knowledge of:
o Mathematical Induction

o Substitution/Iterative Method

o Recurrences

09/05/1
3

CS380 Algorithm Design and Analysis

4CS380 Algorithm Design and Analysis

class Tree

{

public:

 // returns true if t represents a binary
// search tree containing no duplicate values;
bool IsBST();

// return true if & only if all values in the tree are
// less than val

 bool isLessThan(int val);
// see above
 bool isGreaterThan(int val);

private:
int mInfo;
Tree * mpsLeft;
Tree * mpsRight;

};

09/05/13

Thank you Owen Astrachan

 // returns true if t represents a binary
// search tree containing no duplicate values;

bool IsBST()

{
bool bLeftIsTree = true, bRightIsTree = true;
bool bLessThan = true, bGreaterThan = true;
if(t->left)
{
 bLeftIsTree = t->left->IsBST();
 bLessThan = t->left->isLessThan(t->info);

 }
if(t->right)
{
 bRightIsTree = t->right->IsBST();
 bGreaterThan = t->right->isGreaterThan(t->info);
}
return bLessThan &&

 bGreaterThan &&

 bLeftIsTree &&

 bRightIsTree;

} // Complexity with n nodes in the tree?
09/05/13 CS380 Algorithm Design and Analysis

6

Another Example

• What is the asymptotic complexity of the
function below? Assume Combine is O(n)

// postcondition: a[left] <= ... <= a[right]

void DoStuff(vector<int> & a, int left, int right)

{

 int mid = (left + right)/2;

 if (left < right)

 {

 DoStuff(a, left, mid);

 DoStuff(a, mid + 1, right);

 Combine(a, left, mid, right);

 }

}

09/05/13 CS380 Algorithm Design and Analysis

7

Recurrence Relation

• A recurrence relation contains two
equations
o One for the general case

o One for the base case

09/05/13 CS380 Algorithm Design and Analysis

8

Efficiency of Binary Search

09/05/1
3

CS380 Algorithm Design and Analysis

9

Merge Sort

09/05/13 CS380 Algorithm Design and Analysis

• MERGE-SORT(A, p, r) // A:Array; p,r: ints
// p & r are indices into the array (p < r)

 if p < r //Check for base case

 q = (p + r) / 2 // Divide

 MERGE-SORT(A, p, q) //Conquer

 MERGE-SORT(A, q + 1, r) //Conquer

 MERGE(A, p, q, r) //Combine

10

Recurrence Relation

• Let T(n) be the time for Merge-Sort to
execute on an n element array.

• The time to execute on a one element array
is O(1)

• Then we have the following relationship:

09/05/13 CS380 Algorithm Design and Analysis

11

Merge Sort

• To solve the recurrence relation we’ll write n
instead of O(n) as it makes the algebra
simpler:
o T(n) = 2 T(n/2) + n

o T(1) = 1

• Solve the recurrence by iteration
(substitution)

• Use induction to prove the solution is correct

09/05/13 CS380 Algorithm Design and Analysis

12

Recurrence Relations to Remember

09/05/13 CS380 Algorithm Design and Analysis

T(n) = T(n/2) + O(1)

T(n) = T(n-1) + O(1)

T(n) = 2 T(n/2) + O(1)

T(n) = T(n-1) + O(n)

T(n) = 2 T(n/2) + O(n)

13

Approaches to Algorithm Design

• Incremental
o Job is partly done – do a little more, repeat until

done.

• Divide-and-Conquer (recursive)
o Divide problem into sub-problems of the same

kind.

o For small subproblems, solve, else, solve them
recursively.

o Combine subproblem solutions to solve the
whole thing.

09/05/13 CS380 Algorithm Design and Analysis

14

Your Turn

• Solve the following recurrence relation using
the expansion (iteration) method
o T(n) = T(n-1) + 2n -1

o T(0) = 0

09/05/13 CS380 Algorithm Design and Analysis

15CS380 Algorithm Design and Analysis

For Next Time

• So far we’ve covered chapters 1, 2, and 3.

09/05/13

	Recurrence Relations – Running Time for Recursive Functions
	Gnome Sort
	Divide and Conquer Algorithms
	Motivation
	Slide 5
	Another Example
	Recurrence Relation
	Efficiency of Binary Search
	Slide 9
	Slide 10
	Slide 11
	Recurrence Relations to Remember
	Approaches to Algorithm Design
	Your Turn
	For Next Time

