Another Sorting Algorithm

• What was the running time of insertion sort?

• Can we do better?

Designing Algorithms

- Many ways to design an algorithm:
 - Incremental:

• Divide and Conquer:

Divide and Conquer, section 2.3.1

Merge Sort, p 34

 Merge Sort is an example of a divide and conquer algorithm

MERGE-SORT(A, p, r) // A:Array; p,r: ints

// p & r are indices into the array (p < r)</pre>

- if p < r //Check for base case</pre>
 - $q = \lfloor (p + r) / 2 \rfloor // Divide (floor)$

MERGE-SORT (A, p, q) //Conquer

MERGE-SORT(A, q + 1, r) //Conquer

MERGE(A, p, q, r) //Combine

Example

How would the following array (n=11) be sorted?
Since we are sorting the full array, p=1 and r = 11.

- What would the initial call to MERGE-SORT look like?
- What would the next call to MERGE-SORT look like?
- What would the one after that look like?

The Merge Procedure

- Input: Array A and indices p, q, r such that
 - p ≤q < r
 - Subarray A[p..q] is sorted and subarray A[q+1..r] is sorted. Neither subarray is empty

 Output: The two subarrays are merged into a single sorted subarray in A[p..r]

MERGE(A,p,q,r) // A: Array, p,q,r: ints				
1	n1 = q - p + 1			
2	n2 = r - q			
3	<pre>let L[1n1+1] and R[1n2+1] be new arrays</pre>			
4	for i = 1 to n1			
5	L[i] = A[p + i -1]			
6	for $j = 1$ to $n2$			
7	R[j] = A[q + j]			
8	L[n1 + 1] = infinity			
9	R[n2 + 1] = infinity			
10	i=1			
11	j=1			
12	for $k = p$ to r			
13	if L[i] <= R[j]			
14	A[k] = L[i]			
15	i = i + 1			
16	else A[k]= R[j]			
17	j = j + 1			

 A call of MERGE(A, 1, 3, 5) where the array is:

Runtime Analysis

 Best, average, and worst case complexity of an algorithm is a numerical function of the size of the instances.

Runtime

- It is difficult to work with *exactly* because it is typically very complicated.
- It is cleaner and easier to talk about upper and lower bounds of the function.
- Remember that we ignore constants.
 - This makes sense since running our algorithm on a machine that is twice as fast will affect the running time by a multiplicative constant of 2, we are going to have to ignore constant factors anyway.

Asymptotic Notation, Chapter 3

 Asymptotic notation (O, Θ, Ω) are the best that we can practically do to deal with the complexity of functions.

Bounding Functions

• g(n) = O(f(n))

• $g(n) = \Omega(f(n))$

• $g(n) = \Theta(f(n))$

Examples of O, Ω , and Θ

Formal Definitions – Big Oh

• f(n)=O(g(n))

Formal Definitions – Big Omega

Formal Definitions – Big Theta

Logarithms

- It is important to understand deep in your bones what logarithms are and where they come from.
- A logarithm is simply an inverse exponential function. Saying b^x = y is equivalent to saying that x = log_b y.

Logarithms

- Exponential functions, like the amount owed on a n year mortgage at an interest rate of c % per year, are functions which grow distressingly fast, as anyone who has tried to pay off a mortgage knows.
- Thus inverse exponential functions, ie. logarithms, grow refreshingly slowly.

Examples of Logarithmic Functions

Asymptotic Dominance in Action

	O(lg n)	O(n)	O(n lg n)	n²	2 ⁿ	n!
10	0.003 µs	0.01 µs	0.033 µs	0.1 µs	1 µs	3.63 ms
20	0.004 µs	0.02 µs	0.086 µs	0.4 µs	1 ms	77.1 years
30	0.005 µs	0.03 µs	0.147 µs	0.9 µs	1 sec	8.4*1015 yrs
40	0.005 µs	0.04 µs	0.213 µs	1.6 µs	18.3 min	
50	0.006 µs	0.05 µs	0.282 µs	2.5 µs	13 days	
100	0.007 µs	0.1 µs	0.644 µs	10 µs	4*10 ¹³ yrs	
1,000	0.010 µs	1.00 µs	9.966 µs	1 ms		
10,000	0.013 µs	10 µs	130 µs	100 ms		
100,000	0.017 µs	0.10 ms	1.67 ms	10 sec		
1,000,000	0.020 µs	1 ms	19.93 ms	16.7 min		
10,000,000	0.023 µs	0.01 sec	0.23 sec	1.16 days		
100,000,000 08/16/13	0.027 µs	0.10 sec CS380	2.66 sec Algorithm Desig	115.7 Indatus Analysis		

For Next Time

• Read Chapter 3 from the book.