
1

Another Sorting Algorithm

• What was the running time of insertion sort?

• Can we do better?

CS380 Algorithm Design and Analysis

2

Designing Algorithms

• Many ways to design an algorithm:

o Incremental:

o Divide and Conquer:

CS380 Algorithm Design and Analysis

3

Divide and Conquer, section 2.3.1

• Divide

• Conquer

• Combine

CS380 Algorithm Design and Analysis

4

Merge Sort, p 34

• Merge Sort is an example of a divide and conquer
algorithm

MERGE-SORT(A, p, r) // A:Array; p,r: ints

// p & r are indices into the array (p < r)

 if p < r //Check for base case

 q = (p + r) / 2 // Divide (floor)

 MERGE-SORT(A, p, q) //Conquer

 MERGE-SORT(A, q + 1, r) //Conquer

 MERGE(A, p, q, r) //Combine

CS380 Algorithm Design and Analysis

5

Example

• How would the following array (n=11) be sorted?
Since we are sorting the full array, p=1 and r = 11.

• What would the initial call to MERGE-SORT look like?

• What would the next call to MERGE-SORT look like?

• What would the one after that look like?

CS380 Algorithm Design and Analysis

6

The Merge Procedure

• Input: Array A and indices p, q, r such that
o p q < r≤

o Subarray A[p..q] is sorted and subarray A[q+1..r]
is sorted. Neither subarray is empty

• Output: The two subarrays are merged into
a single sorted subarray in A[p..r]

CS380 Algorithm Design and Analysis

p 31MERGE(A,p,q,r) // A: Array, p,q,r: ints

1 n1 = q - p +1

2 n2 = r - q

3 let L[1..n1+1] and R[1..n2+1] be new arrays

4 for i = 1 to n1

5 L[i] = A[p + i -1]

6 for j = 1 to n2

7 R[j] = A[q + j]

8 L[n1 + 1] = infinity

9 R[n2 + 1] = infinity

10 i=1

11 j=1

12 for k = p to r

13 if L[i] <= R[j]

14 A[k] = L[i]

15 i = i + 1

16 else A[k]= R[j]

17 j = j + 1

8

Example

• A call of MERGE(A, 1, 3, 5) where the array
is:

3 5 7 2 6

CS380 Algorithm Design and Analysis

9

Runtime Analysis

• Best, average, and worst case complexity of
an algorithm is a numerical function of the
size of the instances.

CS380 Algorithm Design and Analysis

10

Runtime

• It is difficult to work with exactly because it
is typically very complicated.

• It is cleaner and easier to talk about upper
and lower bounds of the function.

• Remember that we ignore constants.
o This makes sense since running our algorithm

on a machine that is twice as fast will affect the
running time by a multiplicative constant of 2, we
are going to have to ignore constant factors
anyway.

CS380 Algorithm Design and Analysis

11

Asymptotic Notation, Chapter 3

• Asymptotic notation (Ο, Θ, Ω) are the best
that we can practically do to deal with the
complexity of functions.

CS380 Algorithm Design and Analysis

12

Bounding Functions

• g(n) = Ο(f(n))

• g(n) = Ω(f(n))

• g(n) = Θ(f(n))

CS380 Algorithm Design and Analysis

13

Examples of Ο, Ω, and Θ

CS380 Algorithm Design and Analysis

14

Formal Definitions – Big Oh

•

CS380 Algorithm Design and Analysis

f (n)=Ο (g (n))

15

Formal Definitions – Big Omega

CS380 Algorithm Design and Analysis

16

Formal Definitions – Big Theta

CS380 Algorithm Design and Analysis

17

Logarithms

• It is important to understand deep in your
bones what logarithms are and where they
come from.

• A logarithm is simply an inverse exponential
function. Saying bx = y is equivalent to
saying that x = logb y.

CS380 Algorithm Design and Analysis

18

Logarithms

• Exponential functions, like the amount owed
on a n year mortgage at an interest rate of c
% per year, are functions which grow
distressingly fast, as anyone who has tried to
pay off a mortgage knows.

• Thus inverse exponential functions, ie.
logarithms, grow refreshingly slowly.

CS380 Algorithm Design and Analysis

19

Examples of Logarithmic Functions

CS380 Algorithm Design and Analysis

20

Asymptotic Dominance in Action

O(lg n) O(n) O(n lg n) n2 2n n!

10 0.003 μs 0.01 μs 0.033 μs 0.1 μs 1 μs 3.63 ms

20 0.004 μs 0.02 μs 0.086 μs 0.4 μs 1 ms 77.1 years

30 0.005 μs 0.03 μs 0.147 μs 0.9 μs 1 sec 8.4*1015 yrs

40 0.005 μs 0.04 μs 0.213 μs 1.6 μs 18.3 min

50 0.006 μs 0.05 μs 0.282 μs 2.5 μs 13 days

100 0.007 μs 0.1 μs 0.644 μs 10 μs 4*1013 yrs

1,000 0.010 μs 1.00 μs 9.966 μs 1 ms

10,000 0.013 μs 10 μs 130 μs 100 ms

100,000 0.017 μs 0.10 ms 1.67 ms 10 sec

1,000,000 0.020 μs 1 ms 19.93 ms 16.7 min

10,000,000 0.023 μs 0.01 sec 0.23 sec 1.16 days

100,000,000 0.027 μs 0.10 sec 2.66 sec 115.7
days

1,000,000,000 0.030 μs 1 sec 29.90 sec 3.7 years

08/16/13 CS380 Algorithm Design and Analysis

21CS380 Algorithm Design and Analysis

For Next Time

• Read Chapter 3 from the book.

	Another Sorting Algorithm
	Designing Algorithms
	Divide and Conquer
	Merge Sort
	Example
	The Merge Procedure
	Slide 7
	Slide 8
	Exact Analysis is Hard
	Slide 10
	Asymptotic Notation
	Bounding Functions
	Examples of Ο, Ω, and Θ
	Formal Definitions – Big Oh
	Formal Definitions – Big Omega
	Formal Definitions – Big Theta
	Logarithms
	Slide 18
	Examples of Logarithmic Functions
	Asymptotic Dominance in Action
	For Next Time

