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Another Sorting Algorithm

• What was the running time of insertion sort?

• Can we do better?
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Designing Algorithms

• Many ways to design an algorithm:

o Incremental: 

o Divide and Conquer: 
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Divide and Conquer, section 2.3.1

• Divide

• Conquer

• Combine
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Merge Sort, p 34

• Merge Sort is an example of a divide and conquer 
algorithm

MERGE-SORT(A, p, r) // A:Array; p,r: ints

// p & r are indices into the array (p < r)

  if p < r             //Check for base case

    q = (p + r) / 2   // Divide (floor)

    MERGE-SORT(A, p, q)     //Conquer

    MERGE-SORT(A, q + 1, r) //Conquer

    MERGE(A, p, q, r)       //Combine
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Example

• How would the following array (n=11) be sorted? 
Since we are sorting the full array, p=1 and r = 11.

• What would the initial call to MERGE-SORT look like?

• What would the next call to MERGE-SORT look like?

• What would the one after that look like?
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The Merge Procedure

• Input: Array A and indices p, q, r such that
o p  q < r≤

o Subarray A[p..q] is sorted and subarray A[q+1..r] 
is sorted. Neither subarray is empty

• Output: The two subarrays are merged into 
a single sorted subarray in A[p..r]
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p 31MERGE(A,p,q,r) // A: Array, p,q,r: ints

1 n1 = q - p +1

2 n2 = r - q

3 let L[1..n1+1] and R[1..n2+1] be new arrays

4 for i = 1 to n1

5   L[i] = A[p + i -1]

6 for j = 1 to n2

7   R[j] = A[q + j]

8 L[n1 + 1 ] = infinity

9 R[n2 + 1 ] = infinity

10 i=1

11 j=1

12 for k = p to r

13   if L[i] <= R[j]

14     A[k] = L[i]

15     i = i + 1

16   else A[k]= R[j]

17     j = j + 1
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Example

• A call of MERGE(A, 1, 3, 5) where the array 
is:

3 5 7 2 6
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Runtime Analysis

• Best, average, and worst case complexity of 
an algorithm is a numerical function of the 
size of the instances.
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Runtime

• It is difficult to work with exactly because it 
is typically very complicated.

• It is cleaner and easier to talk about upper 
and lower bounds of the function.

• Remember that we ignore constants.
o This makes sense since running our algorithm 

on a machine that is twice as fast will affect the 
running time by a multiplicative constant of 2, we 
are going to have to ignore constant factors 
anyway.
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Asymptotic Notation, Chapter 3

• Asymptotic notation (Ο, Θ, Ω) are the best 
that we can practically do to deal with the 
complexity of functions.
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Bounding Functions

• g(n) = Ο(f(n))

•  g(n) = Ω(f(n)) 

•  g(n) = Θ(f(n))
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Examples of Ο, Ω, and Θ
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Formal Definitions – Big Oh

•                   
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f (n)=Ο (g (n ))
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Formal Definitions – Big Omega
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Formal Definitions – Big Theta
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Logarithms

• It is important to understand deep in your 
bones what logarithms are and where they 
come from.

• A logarithm is simply an inverse exponential 
function. Saying bx = y is equivalent to 
saying that x = logb y.
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Logarithms

• Exponential functions, like the amount owed 
on a n year mortgage at an interest rate of c
% per year, are functions which grow 
distressingly fast, as anyone who has tried to 
pay off a mortgage knows.

• Thus inverse exponential functions, ie. 
logarithms, grow refreshingly slowly.
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Examples of Logarithmic Functions
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Asymptotic Dominance in Action

O(lg n) O(n) O(n lg n) n2 2n n!

10 0.003 μs 0.01 μs 0.033 μs 0.1 μs 1 μs 3.63 ms

20 0.004 μs 0.02 μs 0.086 μs 0.4 μs 1 ms 77.1 years

30 0.005 μs 0.03 μs 0.147 μs 0.9 μs 1 sec 8.4*1015 yrs

40 0.005 μs 0.04 μs 0.213 μs 1.6 μs 18.3 min

50 0.006 μs 0.05 μs 0.282 μs 2.5 μs 13 days

100 0.007 μs 0.1 μs 0.644 μs 10 μs 4*1013 yrs

1,000 0.010 μs 1.00 μs 9.966 μs 1 ms

10,000 0.013 μs 10 μs 130 μs 100 ms

100,000 0.017 μs 0.10 ms 1.67 ms 10 sec

1,000,000 0.020 μs 1 ms 19.93 ms 16.7 min

10,000,000 0.023 μs 0.01 sec 0.23 sec 1.16 days

100,000,000 0.027 μs 0.10 sec 2.66 sec 115.7 
days

1,000,000,000 0.030 μs 1 sec 29.90 sec 3.7 years
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For Next Time

• Read Chapter 3 from the book.
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