Another Sorting Algorithm

- What was the running time of insertion sort?
- Can we do better?

Designing Algorithms

- Many ways to design an algorithm:
- Incremental:
- Divide and Conquer:

Divide and Conquer, section 2.3.1

- Divide
- Conquer
- Combine

Merge Sort, p 34

- Merge Sort is an example of a divide and conquer algorithm MERGE-SORT (A, p, r) // A:Array; p,r: ints $/ / \mathrm{p} \& \mathrm{r}$ are indices into the array ($\mathrm{p}<\mathrm{r}$)
if $\mathrm{p}<\mathrm{r} \quad / /$ Check for base case
$q=\lfloor(p+r) / 2\rfloor / / D i v i d e ~(f l o o r)$
MERGE-SORT (A, p, q) //Conquer
MERGE-SORT (A, q + 1, r) //Conquer
MERGE (A, p, q, r) //Combine

Example

- How would the following array ($\mathrm{n}=11$) be sorted? Since we are sorting the full array, $p=1$ and $r=11$.
- What would the initial call to MERGE-SORT look like?
- What would the next call to MERGE-SORT look like?
- What would the one after that look like?

The Merge Procedure

- Input: Array A and indices p, q, r such that
- $p \leq q<r$
- Subarray A[p..q] is sorted and subarray A[q+1..r] is sorted. Neither subarray is empty
- Output: The two subarrays are merged into a single sorted subarray in A[p..r]

MERGE(A,p,q,r) // A: Array, p,q,r: ints

Example

- A call of $\operatorname{MERGE}(\mathrm{A}, 1,3,5)$ where the array is:

Runtime Analysis

- Best, average, and worst case complexity of an algorithm is a numerical function of the size of the instances.

Runtime

- It is difficult to work with exactly because it is typically very complicated.
- It is cleaner and easier to talk about upper and lower bounds of the function.
- Remember that we ignore constants.
- This makes sense since running our algorithm on a machine that is twice as fast will affect the running time by a multiplicative constant of 2 , we are going to have to ignore constant factors anyway.

Asymptotic Notation, Chapter 3

- Asymptotic notation $(\mathrm{O}, \Theta, \Omega)$ are the best that we can practically do to deal with the complexity of functions.

Bounding Functions

- $g(n)=O(f(n))$
- $g(n)=\Omega(f(n))$

$$
g(n)=\Theta(f(n))
$$

Examples of O, Ω, and Θ

Formal Definitions - Big Oh

- $f(n)=O(g(n))$

Formal Definitions - Big Omega

Formal Definitions - Big Theta

Logarithms

- It is important to understand deep in your bones what logarithms are and where they come from.
- A logarithm is simply an inverse exponential function. Saying $b x=y$ is equivalent to saying that $x=\log _{b} y$.

Logarithms

- Exponential functions, like the amount owed on a n year mortgage at an interest rate of c \% per year, are functions which grow distressingly fast, as anyone who has tried to pay off a mortgage knows.
- Thus inverse exponential functions, ie. logarithms, grow refreshingly slowly.

Examples of Logarithmic Functions

Asymptotic Dominance in Action

	O(lg n)	O(n)	O(n lg n)	n^{2}	$2^{\text {n }}$	n !
10	$0.003 \mu \mathrm{~s}$	$0.01 \mu \mathrm{~s}$	$0.033 \mu \mathrm{~s}$	$0.1 \mu \mathrm{~s}$	1 us	3.63 ms
20	$0.004 \mu \mathrm{~s}$	$0.02 \mu \mathrm{~s}$	$0.086 \mu \mathrm{~s}$	$0.4 \mu \mathrm{~s}$	1 ms	77.1 years
30	$0.005 \mu \mathrm{~s}$	$0.03 \mu \mathrm{~s}$	$0.147 \mu \mathrm{~s}$	$0.9 \mu \mathrm{~s}$	1 sec	$8.4 * 1015 \mathrm{yrs}$
40	$0.005 \mu \mathrm{~s}$	$0.04 \mu \mathrm{~s}$	$0.213 \mu \mathrm{~s}$	$1.6 \mu \mathrm{~s}$	18.3 min	
50	$0.006 \mu \mathrm{~s}$	$0.05 \mu \mathrm{~s}$	$0.282 \mu \mathrm{~s}$	$2.5 \mu \mathrm{~s}$	13 days	
100	$0.007 \mu \mathrm{~s}$	$0.1 \mu \mathrm{~s}$	$0.644 \mu \mathrm{~s}$	$10 \mu \mathrm{~s}$	4*1013 yrs	
1,000	$0.010 \mu \mathrm{~s}$	$1.00 \mu \mathrm{~s}$	$9.966 \mu \mathrm{~s}$	1 ms		
10,000	$0.013 \mu \mathrm{~s}$	$10 \mu \mathrm{~s}$	130 \%	100 ms		
100,000	$0.017 \mu \mathrm{~s}$	0.10 ms	1.67 ms	10 sec		
1,000,000	$0.020 \mu \mathrm{~s}$	1 ms	19.93 ms	16.7 min		
10,000,000	$0.023 \mu \mathrm{~s}$	0.01 sec	0.23 sec	1.16 days		
$\begin{array}{r} 100,000,000 \\ 08 / 16 / 13 \end{array}$	$0.027 \mu \mathrm{~s}$	$\begin{gathered} 0.10 \mathrm{sec} \\ \operatorname{cs} 380 \end{gathered}$	2.66 sec Algorithm Desif	$\begin{aligned} & 115.7 \\ & { }_{\text {nnd }} \text { dakfennalysis } \end{aligned}$		

For Next Time

- Read Chapter 3 from the book.

