CS380 Algorithm Design & Analysis
Assignment 3: Quick Sort and performance measurement

Date Assigned: Sept 30, 2013 Date Due: October, 11, 2013: 4:45 pm
Total Points: 50 pts

For this project you will implement QuickSort in the same manner as MergeSort and
InsertionSort in project 1. You may add this code to your Sorting Project.

You will also need to write a new driver that will run each of these four (merge,
insertion, quick) algorithms and time the execution of each sort routine and track
how many times needSwap is called by each sort. Three new files,
largeMountains.txt, largeMountainsASC.txt, and largeMountainsDESC.txt is
provided. These each contain 1,000,000 randomly generated mountains.

*Also, reimplement MergeSort and use either a native C array or a SortableArray for
your temporary storage, which ever you did not do in the previous assignment.
When you turn in your assignment you must havetwo working implementations for
merge sort.

Your driver must, for each of the three files:

Read the first 100 mountains, and sort using each of the four algorithms. Time the call
to sort() in each case and track the number of needSwap()s called. Sort in the DESC
direction. For each sort algorithm, reload the data from the file before sorting.

Run Insertion sort for each of the sizes 100, 1,000, 10,000, and 100,000. Run Merge
sort and Quick sort for each of the sizes 100, 1,000, 10,000, 100,000, and 1,000,000.

OUTPUT
Filename: largeMountains.txt
Size 100
Insertion Sort:
Swaps: XXXX
Time: XXXX
Merge Sort: Native Array
Swaps: XXXX
Time: XXXX
Merge Sort: SortableArray
Swaps: XXXX
Time: XXXX
Quick Sort:
Swaps: XXXX
Time: XXXX

<repeat for each size>

What to Submit

I will pull your project out of Subversion. You must provide me with a color,
double sided hard copy of

QuickSort.h / QuickSort.cpp

PerformanceDriver.cpp

<any other NEW or CHANGED source files>

A printout of the text file containing your answers to the questionsposted ON
MOODLE.

A print out of your output

Your code must build without any warnings. You must follow the C++ coding
standards. Check for memory leaks!

Start early! THIS MAY TAKE HOURS TO RUN, PLAN ACCORDINGLY.

Get the files at:
http://zeus.cs.pacificu.edu/chadd/cs380f13/largeMountains.zip

You may have many, many calls to needSwap.
http://msdn.microsoft.com/en-us/library/s3f49ktz(v=vs.90).aspx

Hints on using timers in C++:

#include <ctime>

clock t start, finish;

start = clock();

sort(); // Call your sorting algorithm

finish = clock();

cout << "Time for sort (seconds): " << ((double)(finish -
start))/CLOCKS PER SEC;

OR

#include <windows.h> //and follow this link
http://stackoverflow.com/questions/1739259/how-to-use-
queryperformancecounter/1739265#1739265

Be sure to do all of you timing via “Run without debugging” and without memory
debugging.

For deeply recursive algorithms, you may need to increase the available statck
space for your project.
Properties | Configuration Properties | Linker | System |

Stack Reserve Size 8388608 (number of bytes)
Stack Commit Size 4000000

Bonus:

Perform timings for Heap Sort as well for whatever sizes seem reasonable. For heap sort, you
must insert each item into the heap AND extract each item. The timed operation is the extraction
of all elements.

