CS 360 Spring 2012 PUIM Command Line Client and Library Assignment Two
Feb 20, 2012

DUE: Feb 22, 2012, 2:15 pm Protocol State Diagrams (Client/Server)

DUE: March 5, 2012, 11:59pm 50 points

For this project, you need to produce a Java command line chat client that will work with the
instructor's server. You must produce code that will be easy to share with an Android client and Java
server in the future. Irecommend that shared code be placed in a project libPUIM_PUNetID that each
application can import and use.

There is no C server for this project, only a Java server.

The PUIM (Pacific University Instant Message) is written on top of TCP streams. The protocol is
similar to SMTP or HTTP. There is no explicit packet being transferred between client and server like
there is with DNS or the Math Client/Server. All data is transferred as Java Strings. No
interoperability with C is provided or expected.

PUIM Version 1
The protocol messages are specified below.

Each line of text is a maximum of 1024 characters including the \n.
Each line must be terminated by a \n.

Lines marked with C are produced by the client. Lines marked with S
are produced by the server. Neither C nor S are transmitted.

For ERR messages, any string after the ERR is optional.

Session Startup.
C HELLO username
S OK | ERR Username already in use

Session Disconnect
C DISCONNECT
S OK | MSG FROM:username

Send a message to another user.

C MSG TO:username

S OK | ERR Username not found | MSG FROM:username
C <TEXT terminated with single . on a line>
C
S

OK
Receive a message from another user.
MSG FROM:username

S
C OK

S <TEXT terminated with single . on a line>
S

C

OK

CONFLICTS

If a server and client both initiate the send of a message

the CLIENT must back off and accept the server's message by sending
an OK. The client then attempts to resend its message after the
server completes its transaction.

If the client requests to DISCONNECT but receives MSG FROM:username
rather than OK, the client must receive the full message and after
the final OK then try again to DISCONNECT. Once a server has
received DISCONNECT (even if that DISCONNECT is interrupted by a
message from the server) no new messages can be sent to the client.

Example:

C MSG TO:doug

S MSG FROM:shereen

C OK

S <TEXT terminated with single . on a line>
S .

C OK

C MSG TO:doug

S OK

C <TEXT terminated with single . on a line>
C .

S OK

The Command Line Client

The command line client must take three command line options: server address, server port, and
username. The user can type two commands. EXIT cleanly terminates the connection and exits the

client. SEND username message, will send a message to user username. While the user is typing at the

console, any incoming messages must also be displayed. Note below that you should be able to send
messages to yourself. Bold text is text produced by incoming messages.

bart$ java -jar PUIMCommandLineClient.jar coffee.cs.pacificu.edu 12349 chadd
> SEND chadd This is the message
chadd >> This is the message

> EXIT

bart$

State Diagrams

You must produce a state diagram for both the client and server. The diagram must be produced
electronically (Visio, PowerPoint, Libre/OpenOffice, Google Drawing, etc). Share a copy of the
electronic drawing (PDF) with profchadd@gmail.com and bring a printout to class on Wednesday.

Notes:

The protocol will be changing over the next few assignments. The next assignment is an Android
client. It would be useful to write your code in such a way that the Threads or Client could be reusable
for Android.

Wireshark: You will be able to see this traffic via Wireshark. You will see TCP protocol packets.
Some packets will be marked with ACK and appear to be empty.

ACK and Data.

Mo, w Time Source Destination Protocol Info
8 3.001173 127.8.0.2 127.8.8.2 TCP 12349 > 38226 [ACK] Seq=4 Ack=22 Win=
9 4.,806395 127.9.0.2 12349 > 38226 [PSH, ACK] Seg=4 Ack=22
1A A mACATE 1mT oA & o PIET R Trn SERTE e ATMTAR LRSI F et AT LIdee

Frame 9: 71 bytes on wWwire (568 bits), 71 bytes captured (568 bits)

Linux cooked capture

Internet Protocol, Src: 127.0.8.2 (127.8.8.2), Dbst: 127.0.8.2 (127.8.8.2)

Transmission Control Protocol, Src Port: 12345 (1234%9), Dst Port: 38226 (38226), Seq: 4, Ack: 22,
Data (3 bytes)

Data: 4t4bea

[Length: 3]

q - v v v

QEEs 60 00 03 04 00 06 90 00 00 00 00 08 08 88 88 00 ..., oo,
0018 45 08 68 37 38 G2 40 00 40 06 04 b3 Ff 08 06 82 E..78.@. @.......

@e20 7f @0 @0 ©2 30 3d 95 52 43 57 cc ca 43 1b 49 18 . .,.8=.R CW..C.I.

@830 20 18 @1 88 fe 2d @0 @0 61 @1 @8 83 Sb a5 56 83 EPTE TS

@848 5b a5 52 96 [EENEE IR

ACK Only, no data:

Mo, W | Time Source Destination Protocol | Info
8 3.6081173 127.6.8,2 12349 >
9 4,086395 127.6.8,2 127.8.8,2 TCP 12349 > |
1 A =T = Tl I = 1T7 & & T 177 & &] TFM =N =0 B N .

P Frame 8: 68 bytes on wire (544 bits), 68 bytes captured (544 bits)
P Linux cooked capture
[Internet Protocol, Src: 127.8.8.2 (127.6.8.2), Dst: 127.8.8.2 (127.0.0.2)

P Transmission Control Protocol. 5rc Port: 12345 (12345), Dst Port: 38226 (38226), Seq:

geae 08 68 83 24 00 66 00 @8 06 @8 A9 0 28 a8 A8 80
Bale 45 @@ 8@ 34 38 89 40 a8 46 @& 84 LY 7T 68 80 a2

@E2a 3d 95 52
BE3a S5c B8 68
BE4a

Server:

A simple server will be provided on Wednesday. You can run this server as follows:
bart$ java -jar PUIMSimpleServer.jar edu.pacificu.cs.cs360.PUIM.PUIMServer 12349
Eclipse Project

Name your Eclipse projects CS360_PUIM_CommandLineClient_ PUNetID and
libPUIM_PUNetID.

