
 CS 360 – Spring 2012
Pacific University

Transport Layer

TCP / UDP

Chapter 6

section 6.5 is TCP

12 Mar 2012

 CS 360 – Spring 2012
Pacific University

Layers

Application

Transport

Network

Host-to-Network/Physical/DataLink

Why do we need the
Transport Layer?

 CS 360 – Spring 2012
Pacific University

High Level Overview

• TCP (RFC 793) UDP

• The network can fail in many ways

We'll talk about the Transport Layer via TCP

 CS 360 – Spring 2012
Pacific University

Transport Layer
• Connection / Connectionless

• Completely on endpoint comptuers

• Three phases

 CS 360 – Spring 2012
Pacific University

Segments

• Frames

• Packets

• Segments

 CS 360 – Spring 2012
Pacific University

Transport Layer
• Addressing

• Connection setup

• Storage in the network

• Buffering/performace/expectations

 CS 360 – Spring 2012
Pacific University

TCP Protocol Basics
• Each byte in the stream has its own 32-bit sequence

number

• Basic unit of transfer is the TCP segment

 CS 360 – Spring 2012
Pacific University

 CS 360 – Spring 2012
Pacific University

• If this is not specified the default size is 536 bytes
– RFC 879

• Both sides send this option to determine segment size
– both sides must use the same segment size

TCP Options

16-bit max segment size – 64KB

 CS 360 – Spring 2012
Pacific University

Connection Setup

• What needs to happen?

• What does a reliable byte stream need?

 CS 360 – Spring 2012
Pacific University

Connection Establishment
• 3-way handshake • Uses the SYN and ACK bit

fields in the TCP header
• Security

Tanenbaum, Figure 6-31, p540

 CS 360 – Spring 2012
Pacific University

Initial Sequence Number
• Initial sequence number is not zero

 CS 360 – Spring 2012
Pacific University

Connection Release
• What bad things can happen?

• Two Army Problem

 CS 360 – Spring 2012
Pacific University

Connection Release
• FIN bit

 CS 360 – Spring 2012
Pacific University

Sliding Window
• Sliding window protocol used to manage

flow/retransmission

• Acknowledgement number denotes the next byte to be
received

• Window size denotes how many more bytes may be sent

 CS 360 – Spring 2012
Pacific University

Tanenbaum, Figure 6-40, p565

 CS 360 – Spring 2012
Pacific University

Initial Sequence Number Attack
• Kevin Mitnick

 CS 360 – Spring 2012
Pacific University

Buffers
•

 CS 360 – Spring 2012
Pacific University

Nagle
• When data comes in to the buffer one byte at a time

• Sometimes needs to be disabled
– when might this be bad?

 CS 360 – Spring 2012
Pacific University

Silly Window Syndrome
• Sender produces large chunks of data
• Receiver eats the data a byte at a time

Tanenbaum, Figure 6-41, p568

What is the problem?

How can we fix this?

 CS 360 – Spring 2012
Pacific University

No one will ever need more than 64KB!
• Max window size: 64 KB.

– Goal:

• On a T3 line (44.736 Mbps)

• Hack (Fix) RFC 1323

 CS 360 – Spring 2012
Pacific University

Tanenbaum, Figure 6-33, p543

 CS 360 – Spring 2012
Pacific University

Reliability
• Retransmit!

 CS 360 – Spring 2012
Pacific University

Timers & Retransmission

• Send segment & start timer

• How long should the timeout interval be?
– what factors do we need to

consider?
– what makes this hard?
– what happens if we set the
 timerout to T1? T2?

Tanenbaum, Figure 6-38, p551

 CS 360 – Spring 2012
Pacific University

Timers
• Each connection keeps a value RTT

• RTT = α*RTT + (1 - α)*M

• Timeout: β*RTT

• Jacobson proposed making β roughly proportional to
standard deviation of the ACK time
– use mean deviation as cheap estimator
– variable named D

 CS 360 – Spring 2012
Pacific University

Timers
• D = α * D + (1- α) * | RTT - M|

• Timeout value: RTT + 4 * D

• When might you get two ACKs for the same segment?
– why might this cause problems?
– solution?

 CS 360 – Spring 2012
Pacific University

Other Timers
• Persistence Timer

• Keepalive Timer

 CS 360 – Spring 2012
Pacific University

ACKs & Retransmission
• When does the receiver ACK?

• Fast Retransmit (RFC 2581)

 CS 360 – Spring 2012
Pacific University

Congestion Control
• Some done in Network Layer
• Most done in Transport Layer

– how do you control congestion?

• Law of conservation of packets:
– don’t send new packets until old ones are received

• Dynamically manipulate window size to control how
much data is in the network

• How can we detect congestion in the network?

 CS 360 – Spring 2012
Pacific UniversityTanenbaum, Figure 6-36, p548

 CS 360 – Spring 2012
Pacific University

Implementation Details
• Receiver Capacity

– receiver window (based on receiver buffer size, load, etc)

• Network Capacity
– congestion window (sender window)

• Use the minimum of the two values
• How do we find the Congestion Window Size?

 CS 360 – Spring 2012
Pacific University

A Loss
• What happens when there is a lost packet?

– what does that loss tell us?
– what should we do in response to that?

 CS 360 – Spring 2012
Pacific University

More Details
• When a timeout occurs, we reduce the congestion window

(TCP Tahoe)

• TCP Reno (Fast Recovery)

 CS 360 – Spring 2012
Pacific University

Tanenbaum, Figure 6-37, p550

 CS 360 – Spring 2012
Pacific University

http://www.ietf.org/rfc/rfc793.txt

 CS 360 – Spring 2012
Pacific University

Congestion, RFC 3168 & 5681

• ECN: Explicit Congestion Notification
– TCP Flag: ECE/CWR
– Random Early Detection (RED)

 CS 360 – Spring 2012
Pacific University

In the Network
• Accept packets until buffers fill

– Tail drop

– TCP Global Sync

• Random Early Detection
– as buffer fills, the probability of dropping/marking a packet

increases
– full buffer, probability is 1
– does not penalize bursty traffic

 CS 360 – Spring 2012
Pacific University

PSH

A sending TCP is allowed to collect data from the sending user and to
 send that data in segments at its own convenience, until the push
 function is signaled, then it must send all unsent data. When a
 receiving TCP sees the PUSH flag, it must not wait for more data from
 the sending TCP before passing the data to the receiving process. RFC 793

socket.receive(...); // may block

 CS 360 – Spring 2012
Pacific University

Congestion & Goodput

 CS 360 – Spring 2012
Pacific University

Congestion (6.3)
• Goal: keep the pipe full!

• 100Mbps link, with 5 senders, how much bandwidth each?

• Traffic is bursty

• How do we divide up the bandwidth?
– what determines how much bandwidth a connection can fully

take advantage of?

 CS 360 – Spring 2012
Pacific University

Power
• power = load / delay Kleinrock

• max-min fairness

 CS 360 – Spring 2012
Pacific University

UDP RFC 768

 CS 360 – Spring 2012
Pacific University

UDP

• Does not
– flow control
– congestion control
– retransmission

• Interface to IP with ports added

• Why?

 CS 360 – Spring 2012
Pacific University

Checksum

Checksum is the 16-bit one's complement of the one's complement sum of a
pseudo header of information from the IP header, the UDP header, and the
data, padded with zero octets at the end (if necessary) to make a
multiple of two octets. (RFC 768)

This is exactly how the TCP (IPv4) checksum works. Protocol = 6

Protocol = 17

 CS 360 – Spring 2012
Pacific University

1's Complement

• Invert all the bits
1 and -1 are inversions of each other

• Addition

• Subtraction

negative zero!

	TCP
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	TCP Protocol Basics
	PowerPoint Presentation
	TCP Options
	Slide 10
	Connection Establishment
	Initial Sequence Number
	Slide 13
	Connection Release
	Sliding Window
	Slide 16
	Slide 17
	Buffers
	Nagle
	Silly Window Syndrome
	No one will ever need more than 64KB!
	Slide 22
	Slide 23
	Timers & Retransmission
	Timers
	Slide 26
	Other Timers
	ACKs & Retransmission
	Congestion Control
	Slide 30
	Implementation Details
	A Loss
	More Details
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

