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Layers

Application

Transport

Network

Host-to-Network/Physical/DataLink

Why do we need the
Transport Layer?



 CS 360 – Spring 2012
Pacific University

High Level Overview

• TCP (RFC 793) UDP

• The network can fail in many ways

We'll talk about the Transport Layer via TCP
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Transport Layer
• Connection / Connectionless

• Completely on endpoint comptuers

• Three phases
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Segments

• Frames

• Packets

• Segments
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Transport Layer
• Addressing

• Connection setup

• Storage in the network

• Buffering/performace/expectations
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TCP Protocol Basics
• Each byte in the stream has its own 32-bit sequence 

number

• Basic unit of transfer is the TCP segment
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• If this is not specified the default size is 536 bytes
– RFC 879

• Both sides send this option to determine segment size
– both sides must use the same segment size

TCP Options

16-bit max segment size – 64KB
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Connection Setup

• What needs to happen?

• What does a reliable byte stream need?
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Connection Establishment
• 3-way handshake • Uses the SYN and ACK bit 

fields in the TCP header
• Security

Tanenbaum, Figure 6-31, p540
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Initial Sequence Number
• Initial sequence number is not zero
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Connection Release
• What bad things can happen?

• Two Army Problem
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Connection Release
• FIN bit
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Sliding Window
• Sliding window protocol used to manage 

flow/retransmission

• Acknowledgement number denotes the next byte to be 
received

• Window size denotes how many more bytes may be sent
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Tanenbaum, Figure 6-40, p565
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Initial Sequence Number Attack
• Kevin Mitnick
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Buffers
•
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Nagle
• When data comes in to the buffer one byte at a time

• Sometimes needs to be disabled
– when might this be bad?
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Silly Window Syndrome
• Sender produces large chunks of data
• Receiver eats the data a byte at a time

Tanenbaum, Figure 6-41, p568

What is the problem?

How can we fix this?
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No one will ever need more than 64KB! 
• Max window size: 64 KB.

– Goal: 

• On a T3 line (44.736 Mbps)

• Hack (Fix) RFC 1323



 CS 360 – Spring 2012
Pacific University

Tanenbaum, Figure 6-33, p543
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Reliability
• Retransmit!
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Timers & Retransmission

• Send segment & start timer

• How long should the timeout interval be?
– what factors do we need to 

consider?
– what makes this hard?
– what happens if we set the 
    timerout to T1? T2?

Tanenbaum, Figure 6-38, p551
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Timers
• Each connection keeps a value RTT

• RTT = α*RTT + (1 - α )*M

• Timeout: β*RTT

• Jacobson proposed making β roughly proportional to 
standard deviation of the ACK time
– use mean deviation as cheap estimator
– variable named D
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Timers
• D = α * D + (1- α) * | RTT - M|

• Timeout value: RTT + 4 * D

• When might you get two ACKs for the same segment?
– why might this cause problems?
– solution?
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Other Timers
• Persistence Timer

• Keepalive Timer
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ACKs & Retransmission
• When does the receiver ACK?

• Fast Retransmit (RFC 2581)
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Congestion Control
• Some done in Network Layer
• Most done in Transport Layer

– how do you control congestion?

• Law of conservation of packets:
– don’t send new packets until old ones are received

• Dynamically manipulate window size to control how 
much data is in the network

• How can we detect congestion in the network?
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Implementation Details
• Receiver Capacity

– receiver window (based on receiver buffer size, load, etc)

• Network Capacity
– congestion window (sender window)

• Use the minimum of the two values
• How do we find the Congestion Window Size?
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A Loss
• What happens when there is a lost packet?

– what does that loss tell us?
– what should we do in response to that?
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More Details
• When a timeout occurs, we reduce the congestion window 

(TCP Tahoe)

• TCP Reno (Fast Recovery)
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Tanenbaum, Figure 6-37, p550
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http://www.ietf.org/rfc/rfc793.txt
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Congestion, RFC 3168 & 5681

• ECN: Explicit Congestion Notification
– TCP Flag: ECE/CWR
– Random Early Detection (RED)
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In the Network
• Accept packets until buffers fill

– Tail drop

– TCP Global Sync

• Random Early Detection
– as buffer fills, the probability of dropping/marking a packet 

increases
– full buffer, probability is 1
– does not penalize bursty traffic
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PSH

A sending TCP is allowed to collect data from the sending user and to
  send that data in segments at its own convenience, until the push
  function is signaled, then it must send all unsent data.  When a
  receiving TCP sees the PUSH flag, it must not wait for more data from
  the sending TCP before passing the data to the receiving process. RFC 793

socket.receive(...); // may block
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Congestion & Goodput
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Congestion (6.3)
• Goal: keep the pipe full!

• 100Mbps link, with 5 senders, how much bandwidth each?

• Traffic is bursty

• How do we divide up the bandwidth?
– what determines how much bandwidth a connection can fully 

take advantage of?
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Power
• power = load / delay Kleinrock

• max-min fairness
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UDP RFC 768
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UDP

• Does not
– flow control
– congestion control
– retransmission

• Interface to IP with ports added

• Why?
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Checksum

Checksum is the 16-bit one's complement of the one's complement sum of a
pseudo header of information from the IP header, the UDP header, and the
data,  padded  with zero octets  at the end (if  necessary)  to  make  a
multiple of two octets. (RFC 768)

This is exactly how the TCP (IPv4) checksum works. Protocol = 6

Protocol = 17
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1's Complement

• Invert all the bits
1 and -1 are inversions of each other

• Addition

• Subtraction

negative zero!
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