Multimedia Content

Streaming Media

section 7.4

27 Feb 2012

Topics

Physics

- 7.4.1
- 7.4.2
- compression

- Protocols
 - 7.4.3-7.4.5
 - stored media (multiple encodings)
 - live media
 - real time conf

Download vs Stream

Definitions?

Challenges?

Advantages?

Network Requirements

- What does an application need from the network?
- Data Loss

Bandwidth

• Time-sensitivity

- Aside from the Internet, where do we stream multimedia content?
 - how does that work?
 - how is the Internet different?
- email/web/IM/p2p/DNS/streaming media CS 360 – Spring 2012 Pacific University

Your media player

- How does your media player use RTSP and RTP to play music?
 - UI
 - handle transmission errors (must fight loss of data)
 - decompress content
 - must fight jitter

protocol/server

→fight congestion

→sample responses

→change bit rate

→degrade quality

Streaming Audio

- delays smaller than 150 milliseconds are not noticed
- delays of 400+ milliseconds are annoying
 - ever see a TV news reporter in Iraq interviewed by a news anchor in NYC?
 - human ear is sensitive to short variations (milliseconds)
- We don't need to get transmission perfect, the human ear/brain is good at interpreting a noisy signal
- Human ear can distinguish sounds in the 20 Hz to 20,000 Hz range
- Loudness is logarithmic

Streaming audio

- TCP vs UDP
- Gaps in data are ok, if they are very small

• How do you expect data to be lost in the network?

Advantages to TCP Get complete data* Run via unblock port 80 buffer space is cheap

*streaming stored media

Filling Gaps

- Skip a frame
- Stretch out sounds / interpolate

- Forward Error Correction
 - erasure
 - Parity Packet

- Interleaving
 - even/odd samples in separate packets
 - more tricky with compression

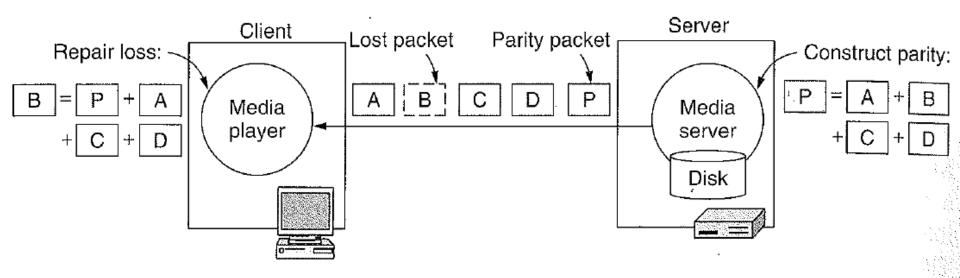


Figure 7-52. Using a parity packet to repair loss.

Combat Jitter

- Buffering....
- Low/high water mark
- RTSP control
- RTP data
 - UDP or TCP
 - sometimes HTTP over TCP

Streaming Live Audio/Video

• Buffering challenges?

- Audience challenges?
 - multicast
 - often, just normal TCP connection
- RTP over UDP
- Big operations use a Content Distribution Network (CDN)

Multicast (RFC3170)!

- Like (smart) broadcast TV for the Internet
- This is really in the transport layer
 - it runs on top of IP
 - we will talk about specific multicast routing algorithms later
- Send to a subset of the network
 - use an overlay network
 - uses address indirection
 - single IP address is used to represent all the receivers
 - multicast group
 - class D multicast address
 - class D: 224.0.0.0 to 239.255.255.255
 - left most bits are 1110
 - IGMP: Internet Group Management Protocol (RFC 4604)

CS 360 – Spring 2012 Pacific University Not available across networks/ service providers

Streaming Audio

- Often have a data channel and a control channel
 why is that?
- RTP (RFC1889/3550) (chapter 6 pg. 546 in your book)
 - Real-time *transport* protocol
 - built on top of UDP
 - data channel
 - "to carry data that has real-time properties." RFC 3550
- RTCP (RFC 1889/3550)
 - sends control/statistical information for a RTP stream
 - "to monitor the quality of service and to convey information about the participants in an on-going session." RFC 3550

RTP

- Generic, real-time transport protocol
- http://www.cs.columbia.edu/~hgs/rtp/
- Media applications use this like MathPacket uses receive()/send()
- How does this fit into the protocol stack?
- Can combine many media streams into one RTP stream
 audio and video may combine into one stream
- Android
- http://developer.android.com/guide/appendix/mediaformats.html
 - you can launch an intent.....

RTP

0 3 1 Π 56 g п 8 g 8 901 |V=2|P|X| \mathbf{PT} sequence number CC |M|timestamp + - + - +synchronization source (SSRC) identifier contributing source (CSRC) identifiers

http://www.ietf.org/rfc/rfc1889.txt

RTSP

- RTSP (RFC 2326)
 - Real Time Streaming Protocol
 - "Internet VCR remote control protocol"
 - pause, fast forward, reverse, and absolute positioning
 - modeled on HTTP
 - control channel
 - often called an "out-of-band" protocol
 - RTSP does not specify the data (media) packet
 - may use RTP or RDT as data channel
 - RDT (RealNetworks *proprietary* transport protocol)
 - released under the RealNetworks Community Source License
 - https://protocol.helixcommunity.org (defunct?)
 - http://www.cs.columbia.edu/~hgs/rtsp/

http://www.cs.columbia.edu/~hgs/rtsp/faq.html#rtp_rtcp_rtsp

RTSP (in-depth)

- Has notion of session built into the protocol
- Maintains state
- Control may be sent over multiple TCP connections
 - why would this be a TCP connection?
 - it is possible to embed the **data** into an RTSP channel
 - why would we want to do this?
 - why would this be a bad idea?

RTSP Control Messages SETUP PI AY PAUSE REDIRECT PING GET PARAMETER SET PARAMETER **OPTIONS** DESCRIBE **TEARDOWN**

RTSP example

- C: SETUP rtsp://audio.example.com/twister/audio RTSP1.0
 Cseq: 1
 Transport: rtp/udp; compression; port=3056; mode=PLAY
- S: RTSP/1.0 200 OK

Cseq: 1 Session: 4231

C: PLAY rtsp://.... Cseq: 2

• • •

- S: RTSP/1.0 200 OK Cseq: 2 Session: 4231
- C: PAUSE rtsp://.... Cseq: 3

• • •

S: RTSP/1.0 200 OK Cseq: 3 Session: 4231

Kurose, Ross; Computer Networking, A Top-Down Approach, 5th edition, p 615 CS 360 – Spring 2012

Pacific University

Teleconference

- Skype
- Requirements?
 - 150 msec delay becomes annoying
 - PDX to Washington, DC: 3779 km ~ 25 msec RTT (minimum!)
 - at 64 kb(it)ps, how long would it take to fill a 1 KByte packet?
 - 125 msec
 - how long to transmit a 1KByte packet at 1Mbps
 - 8 msec

Other time sinks?

- Buffering?
- UDP!

Small Packets!

CS 360 – Spring 2012

Pacific University

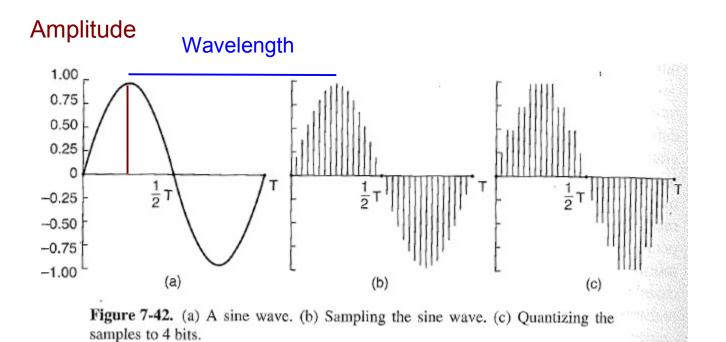
Setup/tear down calls

- H.323
 - International Telecommunication Union
- SIP
 - IETF
 - application layer
 - UDP or TCP
 - RFC 3261
 - setup/management/termination

Either can use RTP/RTCP

Sound to bits

- Sound is a smooth wave
- To digitize it, the wave is sampled at fixed intervals
 - Nyquist theorem: sufficient to make samples at 2*f*, if *f* is the highest frequency (2.1.3)
- Two axes:
 - sampling rate
 - sampling precision
 - Phone:
 - 8000 samples per second
 - 8 bit sample: 256 different gradations (7 bits data, 1 bit control)
 - CD
 - 44,100 samples per second
 - 16 bit sample: 65,536 different gradations


Total Bandwidth? •stereo?

Which sounds better? •any complaints about CD quality sound?

Max Frequency on

- phone
- cd?

Quantization

4 bits represents how many quantities?

Audio Compression

- Lower bandwidth than video
 - still compressed
- Encode/decode
 - compress/uncompress
- Streaming stored audio
 - what does this allow?
- Live audio
 - still compressed. consequences?

Much work on compressing speech for telephone lines

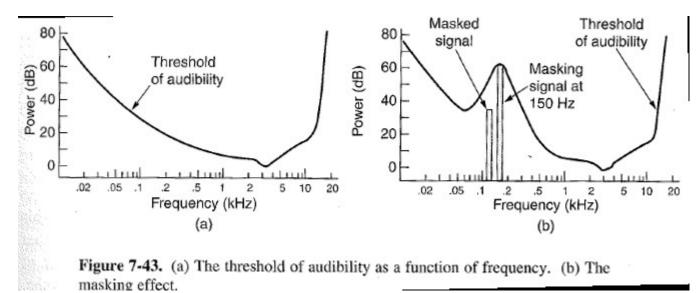
vocoders

Lossy

Audio Compression

- Read section 7.4.1
- AAC (Advanced Audio Coding)
 - audio portion of MPEG-4 files
- MP3 MPEG-1 audio layer (part 3)
 - No RFC, this is not an Internet standard
 - MPEG-1: standard for encoding audio and video
 - MPEG: Moving Pictures Expert Group, part of ISO
 - perceptual encoding
 - exploit "flaws" in the human sense of hearing
 - loud sounds mask quiet sounds

psychoacoustics


- rock'n'roll compressed to 96 kbps (without loss to listener)
- piano concert compressed to 128 kbps (without loss to listener)
- total bandwidth? Stereo?

CS 360 – Spring 2012

Pacific University

Psychoacustics

power ≈ loudness

- get power at each frequency (Fourier transform)
- transmit unmasked frequencies
 - plus other digital compression techniques
 - Huffman encoding

Huffman

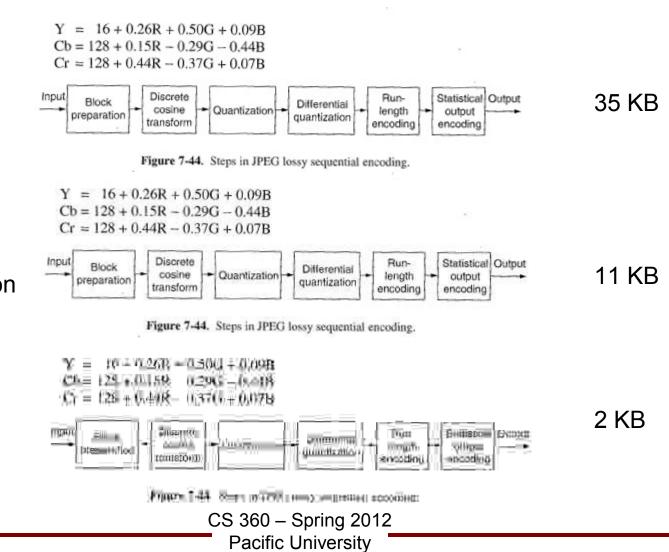
- Key idea:
 - encode common symbol with fewer bits
 - encode uncommon symbol with more bits
 - Count the frequency of each symbol
 - build a tree (not unique)
 Pacific, min number of bits to encode Pacific?

Must send string and Tree; with large enough strings the overhead of the tree is minimal.

Frequency	Value
1	р
1	a
1	f
2	i
2	С

http://www.siggraph.org/education/materials/HyperGraph/video/mpeg/mpegfaq/huffman_tutorial.html

Moving Pictures to bits

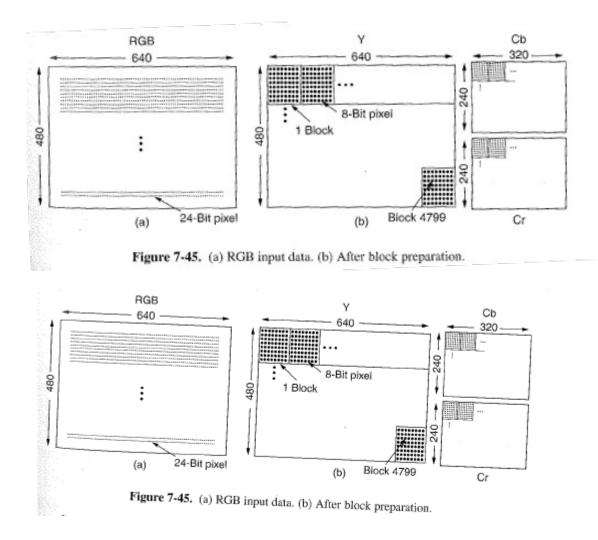

- Pixel: picture element
 - rgb, 8 bits per pixel for 24 bit color
 - how many colors at 24 bits?
- 50 images/second = movement!
- Broadcast TeeVee
 - 30 frames/sec (US)
 - only show half (odd/even) rows per frame
 - interlace
 - 60 frames/sec!
 - your eye is a forgiving organ.
 - image decay

Video Compression, Why?

640 x 480, 24 bits per pixel, 30 frames a second
 bandwidth required?

- How much compression do we need?
 - what is the common download speeds offered by ISPs?
 - don't forget we also need (stereo) audio!

Compression


Where does the compression happen?

JPEG

- Joint Photographic Experts Group
 - 4 modes
 - we care about lossy, sequential mode
- Luminance brightness
 Y
- Chrominance color
 - Cb, Cr
- Calculate a matrix for Y, Cb, Cr
 - average 4 pixels in Cb, Cr matrices to reduce data
 - build blocks of 8x8 in each matrix

Assumption: Most pixels have similar neighbors

Your eyes care more about brightness than color.

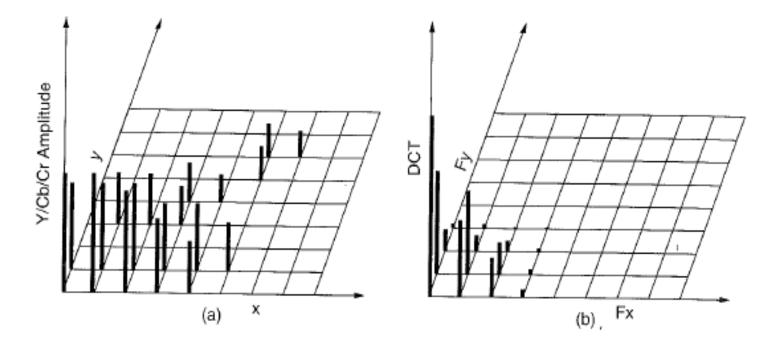


Figure 7-46. (a) One block of the Y matrix. (b) The DCT coefficients.

Differential quantization

DCT coefficients

Quantization table

	_						
150	80	40	14	4	2	1	0
92	75	36	10	6	1	0	0
52	38	26	8	7	4	0	0
12	8	6	4	2	1	0	0
4	3	2	0	0	0	0	0
2	2	1	1	0	0	0	0
1	1	0	0	0	0	0	0
0	0	0	0	0	0	0	0

_	_							
	1	1	2	4	8	16	32	64
	1	1	2	4	8	16	32	64
	2	2	2	4	8	16	32	64
-	4	4	4	4	8	16	32	64
	В	8	. 8	8	8	16	32	64
10	6	16	16	16	16	16	32	64
32	2	32	32	32	32	32	32	64
64	4	64	64	64	64	64	64	64

150	80	20	4	1	0	0	0
92	75	18	3	1	0	0	0
26	19	13	2	1	0	0	0
3	2	2	1	0	0	0	0
1	0	· 0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Quantized coefficients

Figure 7-47. Computation of the quantized DCT coefficients.

Run Length Encoding

MPEG

- Sequence of frames
 - I (intra frame)
 - P (predictive) motion vector of objects from previous frame
 - B (bi-directional) motion vector of objects from previous/next frame

I P	p	р	I	р	р	
-----	---	---	---	---	---	--

- Macroblock: 16x16 pixels (4 luminance, 2 chrominance)
 - each has a motion vector