CS310

Moore Machines

Mealy Machines

(Finite State Transducer p 87 1.24)
September 24, 2010

Pacific University

Description

- Machines that produce output
- Can represent sequential circuits (has memory)
- No accept states
- Deterministic

- Mealy (FST)
- produce output on transition input; output
- Moore

- produce output on state entry
- Input and output alphabet may differ

$\Sigma=\{0,1\}$
 Example

- Count how many times the substring 110 appears in an input string
- What should the output look like?
- Can you do this with both machines?
- Does either machine work better for this?

Pacific University

$\Sigma=\{0,1\}$
 Example

- Count how many times the substring 101 appears in an input string
- What should the output look like?
- Can you do this with both machines?
- Does either machine work better for this?

Pacific University

$\Sigma=\{0,1\}$
 Example

- Transform a binary string into its complement: 001 becomes 110
- Does either machine work better for this?

Pacific University

$$
\Sigma=\{0,1\} \quad 1.27 \text { p } 88
$$

- Output string is identical to input string on the even positions, inverted on odd positions

Pacific University

Practice

 input to produce a binary number as output.

The binary numbers are input 1's place first.

$\Sigma=\{0,1\}$
 Practice

- Convert binary number, 4 bits at a time, to hexadecimal digit
(read binary number 1's place first.)

Pacific University

