
CS 310 – Fall 2010
Pacific University

CS310

Regular Expressions
Sections:1.3 page 63

September 20, 2010

CS 310 – Fall 2010
Pacific University

NFA-DFA equivalence
• Th 1.39: Every NFA has an equivalent DFA

Corollary: A language is regular if and only
if there exists an NFA that recognizes it

Proof:
If the language is regular, there exists a
DFA that recognizes it. Each DFA is an
NFA. Conversely, if there exists an NFA
that recognizes the language, convert the
NFA to a DFA.

CS 310 – Fall 2010
Pacific University

Regular Expressions

• Use regular operations (Union, Concat, Kleene
Star) and languages to create a regular
expression R whose value is a language L(R)
– not unique in general
– order of operations: *, concat, ⋃

R = 0*10*, L(R)={w | w has exactly one 1}

CS 310 – Fall 2010
Pacific University

Regular Expressions
R = 0*10*, L(R)={w | }

 Regular Expression libraries

java.util.regex //java
import re # python
<regex.h> /*GNU C library*/

∑ is used to represent one
symbol from the language

CS 310 – Fall 2010
Pacific University

Exercise
• {w | (w starts with 0 and has odd length) or

(w starts with 1 and has even length) }

NFA?
How do we write this as a RE?

CS 310 – Fall 2010
Pacific University

Definition
• An expression R is Regular if:

R= a, a ∈ ∑

R= ε
R=Ø
R= R1 ⋃ R2 , R1 , R2 are regular
R= R1R2 , R1 , R2 are regular
R= R1* , R1 is regular

• Theorem: A language is regular if and only if
some regular expression describes it
– Can be represented by an NFA

CS 310 – Fall 2010
Pacific University

Proof• Lemma (1.55): If L is described by a
regular expression R, then there exists an
NFA that accepts it

Proof: For each type of regular expression,
develop an NFA that accepts it.
R= a, a ∈ ∑
R= ε
R=Ø
R= R1 ⋃ R2 , R1 , R2 are regular
R= R1R2 , R1 , R2 are regular
R= R1* , R1 is regular

CS 310 – Fall 2010
Pacific University

Example
• aa* ⋃ aba*b*

CS 310 – Fall 2010
Pacific University

Exercise
• {w | every odd position of w is 1 } NFA?

How do we write this?

CS 310 – Fall 2010
Pacific University

Exercise
• {w | w does not contain 110 } NFA?

How do we write this?

CS 310 – Fall 2010
Pacific University

Exercise
• {w| w contains even # 0s or exactly two 1s}

NFA?
How do we write this?

CS 310 – Fall 2010
Pacific University

Proof
• Lemma: If a language is regular, it is

described by a regular expression

• Proof Idea: If a language is regular, there
exists a DFA that accepts it. We need to
convert a DFA to a regular expression.
Steps:
– Convert DFA to GNFA
– Convert GNFA to Regular Expression
– GNFA?!

CS 310 – Fall 2010
Pacific University

Generalized NFA
• NFA where the transitions may have regular

expressions as labels rather than just ∑ or ε
– Reads blocks of symbols from the input

– Wait, why are we doing this?
• to build up the regular expression slowly from the DFA

ab*
a*

(aa)*

aa

ab ⋃ ba

b

ab

ε
qstart

qaccept

CS 310 – Fall 2010
Pacific University

GNFA

• Start state transitions to every other state, no
transitions to start state

• Single accept state, transition to it from every
other state, no way out, Start state != accept state

• Except for the start and accept states, one arrow
goes from every state to every other state (except
the start state) and also from every state to itself.

Special case of
GNFA that we will use!

CS 310 – Fall 2010
Pacific University

DFA to GNFA

1
1 , 0

1 , 00

•Add new start state with ε-
transitions to old start state and Ø
to every other state

Ø means you never take the
transition

•Replace multiple transitions in
same direction with Union
•If no transition exists between
states, add transitions with Ø labels
(just as placeholders)

CS 310 – Fall 2010
Pacific University

DFA to Regular Expression
3 State

DFA
5 State
GNFA

4 State
GNFA

4 State
GNFA

3 State
GNFA

2 State
GNFA

Regular
Expression

We can reduce
the GNFA by one
state at a time

2 states
How many
transitions?
What do the
labels on the
transitions look
like?

CS 310 – Fall 2010
Pacific University

GNFA to Regular Expression
• Each GNFA has at least 2 states (start and

accept)

• To convert GNFA to Regular Expression:
– GNFA has k states, k >= 2

 if k > 2 then
Produce a GNFA with k-1 states

repeat
qstart

qaccept
1 (1*0*)*

CS 310 – Fall 2010
Pacific University

GNFA to k-1 States
• Pick any state in the machine that is not the

start or accept state and remove it

• Fix up the transitions so the language
remains the same

R4

R2

R1 R3

Rip this out!

(R1(R2)*R3) ⋃ R4

This change needs to be
made for every pair of
states connected through
the removed state

CS 310 – Fall 2010
Pacific University

Example, NFA to Regular Expression

b
a, b

a

CS 310 – Fall 2010
Pacific University

Example, NFA to Regular Expression

b

b

b, c

a, b, c

a, c

a

a

a

c

c

	CS310
	NFA-DFA equivalence
	Regular Expressions
	Slide 4
	Exercise
	Definition
	Proof
	Example
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Generalized NFA
	GNFA
	DFA to GNFA
	DFA to Regular Expression
	GNFA to Regular Expression
	GNFA to k-1 States
	Example, NFA to Regular Expression
	Slide 20

