CS310

Converting NFA to DFA

Sections: 1.2 Page 54

September 15, 2010

Quick Review

• 5 tuple (Q, Σ , δ , q₀,F)

$$\Sigma_{\varepsilon} = \Sigma \cup \{e\}$$

$$\delta: Q \times \Sigma_{\varepsilon} \to P(Q)$$

Convert NFA to DFA

• Two machines are equivalent if they recognize the same language

• Every NFA has an equivalent DFA (Th 1.39)

$$\delta_{nfa}: Q \times \Sigma_{\varepsilon} \rightarrow P(Q)$$

- The DFA will need to represent all subsets in *P*(Q) (how many?)
 - let's assume no ε -transitions initially

Convert NFA to DFA

• NFA is N =(Q, \sum , δ , q_0 , F)

• DFA is M=(Q', Σ ', δ ', q_0 ',F')

$$O' =$$

$$q_0' =$$

$$F' =$$

NFA a,b Example (without
$$\varepsilon$$
 or δ_{dfa})

DFA
$$Q'=\{\emptyset, \\ \Sigma'=\{a,b\} \\ Q_{0}'= \\ F'=\{$$

b

$$Q = \{q0,q1\}$$

$$\sum = \{a,b\} \quad \delta \quad a \quad b$$

$$Q_0 = q0 \quad q^0 \quad \{q0,q1\} \quad \{q1\}$$

$$F = \{q0\} \quad q^1 \quad \{\} \quad \{q0\}$$

Let's define the δ_{dfa} (still no ϵ)

$$\begin{split} &\delta_{nfa}\!:\!Q\!\times\!\Sigma_{arepsilon}\!\to\!P(Q) & \text{in NFA} \\ &\delta_{dfa}\!:\!Q\,'\!\times\!\Sigma\!\to\!Q\,' & \text{in DFA} \\ &R\!\in\!Q\,', a\!\in\!\Sigma \\ &\delta_{dfa}(R,a)\!= \end{split}$$

Converting NFA to DFA - & Transitions

• Define start state and δ_{dfa} to include all states that can be reached from a given state by 0 or

more ε transitions

Conversion Example (with ε)

DFA
$$Q'=\{\emptyset, \\ \Sigma'=\{a,b\} \\ Q_{0}'= \\ F'=\{ \\ \delta_{dfa}=$$

CS 310 – Fall 2010
Pacific University