CS310

Finite Automata Sections:1.1, 1.2 page 44

September 10, 2010

Quick Review

- Deterministic Finite Automata:
 - 5-tuple (Q, \sum , δ ,q₀, F)
 - Q: finite set of states
 - \sum : alphabet (finite set)
 - δ : transition function (δ: Qx∑−>Q)
 - q₀: start state
 - F : accepting states (subset of Q)
- Language A is *regular* if there exists a Finite Automata that recognizes A.

Regular Language

• Determinism?

• Regular language – Example?

- Example of non-regular language?

Regular Operations on Languages

- Given two languages, A,B, we can create new *languages* in a variety of ways:
 - What operations have we seen?

$\sum \{0,1\} A = \{w | w ends in 1\} Examples \\B = \{w | w begins with 00\}$

$A \cup B =$

AB =

 $A^* =$

$A \cap B =$

 $\overline{A} =$

Closure of Regular Languages

• A set is *closed* under some operation, Examples?

• Regular operations

Proof

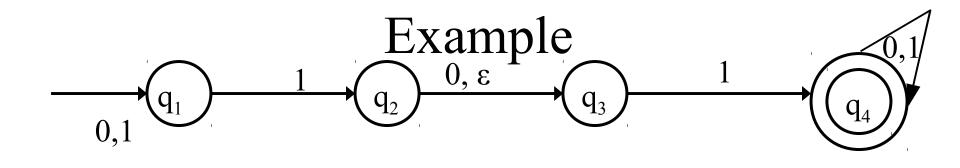
• Theorem 1.25: The class of regular languages is closed under the union operation.

If A and B are regular languages, so is $A \cup B$

What do we need to prove? What does regular mean? What does it mean for $A \cup B$ to be regular?

$\sum_{A=\{w| w \text{ contains a 1 in the penultimate position}\}} Build the machine$

 $A = \{$


Nondeterminism

• Nondeterministic Finite Automata:

NFA

• ε transitions

• Why would we ever use this?

- Does this NFA accept 010110?
- What sequence of states does it go through?

• Theorem 1.26: The class of regular Proof languages is closed under the concatenation operation.

If A and B are regular languages, so is AB.

What do we need to prove?What does regular mean?What does it mean for AB to be regular?Problems?

$A = \{north, south\} B = \{east, west\}$ w = northeast is in AB

many ways to break down this string If the AB machine breaks the string as nort and heast the string will not be accepted

$$A = \{w \mid w = begins with 1 ends with 0\}$$
$$B = \{w \mid w = begins with 0 ends with 1\}$$
$$w = 1000011$$