CS310

Finite Automata Sections:

Sep 3, 2010

Quick Review

- Alphabet: $\Sigma=\{a, b\}$
Σ^{*} : Closure:
- String: any finite sequence of symbols from a given alphabet. $|w|=$ length Concatenation/Prefix/Suffix/Reverse
- Language L over \sum is a subset of \sum^{*}

L= \{x | rule about $x\}$
Concatenation/Union/Kleene Star
Recursive Definition

Finite Automata

- How can we reason about computation?
- Simple model of computation
- Finite Automata
- extremely limited amount of memory
- represent states of computation

Example

- File Editor (Geany)

- saving mechanism
- States?
- Operations?

Computation

- Recognize patterns in data
- Build an automata that can classify a string as part of a language or not
-Why?

Language:
$L=\left\{x \in\{0,1\}^{*} \mid x\right.$ contains at least one 1 and the last 1 is followed by even number of $0 s\}$

Deterministic Finite Automata

Inputs: Accept or Reject?
$\Sigma=\{0,1\}$
1101
1100
1110
0
11

Set of all strings (A) accepted by a machine (M) is the Language of the Machine M recognizes A or M accepts A

Formal Definition

- Deterministic Finite Automata:|

5-tuple (Q, $\left.\Sigma, \delta, q_{0}, F\right)$
Q : finite set of states
Σ : alphabet (finite set)
$\delta:$ transition function ($\delta: Q \times \Sigma->Q$)
q_{0} : start state
F : accepting states (subset of Q)

Q: finite set of states

\sum : alphabet

$\delta:$ transition function
q_{0} : start state
F: accepting states

Q:
$\Sigma:$
$\delta:$
q_{0} : F:

What strings get accepted?
$L(M)=\{$
\}

Pacific University

Designing a DFA

- Identify small pieces
- alphabet, each state needs a transition for each symbol
- finite memory, what crucial data does the machine look for?
- can things get hopeless? do we need a trap?
- where should the empty string be?
- what is the transition into the accept state?
- can you transition out of the accept state?
- Practice!

$L(M)=\{w \mid w=\varepsilon$ or w ends in 1$\}$
 $\Sigma=\{0,1\}$

Q:
$\delta:$
q_{0} :
F:

- $\Sigma=\{0,1\}, L(M)=\{w \mid$ odd \# of 1 s$\}$

Pacific University

Build a DFA to do math!
$L(M)=$ Accept sums that are multiples of 3
$\Sigma=\{0,1,2,<$ Reset $>\}$
Keep a running total of input, modulo 3

Pacific University

- $\Sigma=\{0,1\}, L(M)=\{w \mid$ begins with 1 , ends with 0$\}$

Pacific University

- $\Sigma=\{0,1\}, L(M)=\{w \mid$ contains 110$\}$

Pacific University

- $\Sigma=\{0,1\}, L(M)=\{w \mid$ does not contain 110\}

Pacific University

- $\Sigma=\{0,1\}, L(M)=\left\{w \mid(01)^{*}\right\}$

Pacific University

- $\Sigma=\{0,1\}, L(M)=\{w \mid$ w even \#0s, odd \#1s $\}$

Pacific University

- $\Sigma=\{0,1\}, L(M)=\{w \mid w$ any string except 11 and 111 \}

Pacific University

Formal Definition of Computing

- Given a machine $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ and a string $\mathrm{w}=\mathrm{w}_{1} \mathrm{w}_{2} \ldots \mathrm{w}_{\mathrm{n}}$ over \sum, then M accepts w if there exists a sequence of states $r_{0}, r_{1} \ldots r_{n}$ in Q such that:
$-r_{0}=q_{0} r_{0}$ is the start state
$-\delta\left(r_{i}, w_{i+1}\right)=r_{i+1}, i=0, \ldots, n-1$: legal transitions
$-r_{n} \in F$: stop in an accept state
- M recognizes A if $A=\{w \mid M$ accepts $w\}$
- Language A is regular if there exists a Finite Automata that recognizes A.

