CS310

Complexity Section 7.1

November 22, 2010

CS 310 – Fall 2010 Pacific University

Running time • A = {0^k1^k | k >=0 }

– how long (how many steps?) will it take a single-tape TM to accept or reject a string?

- The running time

 input of length n
 worst case running time
- M is a "f(n) time TM"

Example

- $f(n) = 5n^3 + 4n^2 + 6n + 1$
 - the goal here is to see how the running time grows as n increases
 - for large n, 5n³ dominates this equation
 - coefficient 5 is immaterial
 - we say f(n) = n^3

Big Oh O()

- Asymptotic analysis
 - estimate runtime of algorithm (or TM) on large inputs
 - only look at highest order term
 - allows us to compare runtime of two algorithms

Definition: Big Oh

• f, g are functions: f,g: N \rightarrow R⁺ f(n) = O(g(n)) if positive ints c and n₀ exist such that for every int n >= n₀

 $f(n) \leq c^*g(n)$

g(n) is an asymptotic upper bound for f(n) some constant multiple of g(n) eventually dominates f(n)

• R⁺: set of non-negative real numbers

Pacific University

Example

- $f(n) = 5n^3 + 2n^2 + 22n + 6$
- O(f(n)) = n³
- let c = 6 and $n_0 = 10$
- 5n³ + 2n² + 22n + 6 <= 6n³
 for every n >= n₀
- O(f(n)) = n⁴ as well, but we want the tightest upper bound

Logarithms

• if $x = \log_2 n$ then $2^x = n$ so $\log_h 2^x = \log_h n$ so x $\log_{h} 2 = \log_{h} n$ $so x = (log_h n) / (log_h 2)$ so $\log_{h}(n) = O(\log_{2} n)$ for any base because logb 2 is a constant

Example

f(n) = 3n log₂ n + 5nlog₂ (log₂ n) + 2 f(n) = O(g(n)) = ?
Since log₂ n <= n then log₂ (log₂ n) <= log₂ (n) so f(n) = O(n log₂ n)

Analyzing Algorithms

• $A = \{0^{k}1^{k} | k \ge 0\}$

on input of length n:

 scan, reject if 0 found to right of a 1
 if both 0's and 1's remain, scan, cross off single 0, single 1
 if 0's remain after 1's crossed off or conversely, reject. otherwise accept.

Analysis

- Step 1: scan, verify: n steps forward, n steps back: 2n steps so O(n)
- Step 2: scan, cross off 0 and 1 each scan. Each scan uses O(n) steps, n/2 scans at most, so O(n²)
- Step 3: Scan, accept or reject O(n)
- Total: $O(n) + O(n^2) + O(n) O(n^2)$

Algorithm

- If we had a two tape TM, could we do this in O(n)?
 - linear time?

Complexity relationships between models

 Theorem 7.8: let t(n) >= n, every t(n) time multitape TM has an equivalent O((t(n)²) time single-tape TM.

 Theorem 7.9: Every t(n) >= n time ND single tape TM has an equivalent 2^{O(t(n))} time deterministic single tape TM