CS310

The Halting Problem Section 4.2

November 19, 2010

Pacific University

Will it ever stop?

- $A_{T M}=\{<M, w>\mid M$ is a TM and M accepts $w\}$
- undecidable
- remember, decidable means that the TM will eventually reach an accept or reject state;
it will halt
$-U$ is a Universal TM
- TM U recognizes $\mathrm{A}_{\text {тм }}$:
- 1. Simulate M on input w with U
- 2. If M accepts then U accepts; if M rejects then U rejects; if M never halts then U never halts
- If we could get U to halt, then we could get M to halt

Counting

- Diagonalization
- how can we determine if two infinite sets are the same size? (Georg Cantor)
- cannot just count them up
- the two sets are the same size if the elements of one set can be paired with the elements from the other set (no counting!)
- define a function as a correspondence

Correspondence

- A and B are sets, F is a function from A to $B ; F: A \rightarrow B$
$-F$ is one-to-one if it never maps two different elements to the same place, if $\mathrm{F}(\mathrm{a}) \neq \mathrm{F}$ (c) whenever a $=\mathrm{c}$
$-F$ is onto if it hits every element of B, for each $b \in B$ this is an $a \in A$ such that $F(a)=b$
- A and B are the same size if there is a one-toone, onto function F
$-F$ is a correspondence

Application

- Let N be the set of natural numbers, let E be the set of even natural numbers.
- If we can find a correspondence function between these two infinite sets, the are the same size
$-\mathrm{f}(\mathrm{n})=$?
- Definition: a set is countable if it is finite or in correspondence with the set of natural numbers

Diagonialization

- Is $Q=\{\mathrm{m} / \mathrm{n} \mid \mathrm{m}, \mathrm{n} \in \mathrm{N}\}$ countable?
- can we find a correspondence?
- We can make a list of all the elements in Q, and match them with the elements in N

What could ever be uncountable?

- The set of Real Numbers, R
- Proof by contradiction
- assume R is countable
- there must exists a correspondence function f with the set N
- find some number $x \in R$ that is not paired with a number $p \in N$
- we will construct this number x

Real Numbers are uncountable

- Assume F exists
- Construct x such $x \neq f(p)$ for any p
- x is between 0 and 1

p	$f(p)$
1	$3.14159 \ldots$
2	5.55555
3	$0.1234 \ldots$
p	$f(p)$

- ensure $x \neq f(1)$, set the $10^{\text {th }}$ ' place to 4
- ensure $x \neq f(2)$, set the $100^{\text {th }} s^{\prime}$ place to 6
- forever....
- never select 0 or 9 since $.1999 \ldots=.2000^{*}$
- we know $x \neq f(p)$ for any p since x differs from $f(p)$ in the $p^{\text {th }}$ decimal place
*on the exam prove this for 3 points extra credit

Why do we care?

- Some languages are not TM recognizable
- show that the set of all TMs is countable
- each TM recognizes exactly one language
- show that the set of all languages is not countable
- some language must not match to a TM
- for a finite alphabet, Σ, Σ^{*} is countable
- a finite set of strings of each length

Some languages are not TM recog.

- show that the set of all TMs is countable
- the set of all TM is countable because each TM, M, can be encoded into a string, <M>
- omit all strings that are not valid TMs
- show that the set of all languages is not
- set of all infinite binary sequences, B, is uncountable, using proof by contradiction similar to Real Numbers

Encode TM as string

- Assume $\Sigma=\{0,1\} ; \Gamma=\{0,1, \nabla\}$
- Encode elements of δ using 1 s

$$
\delta\left(q_{i}, x\right)=\left(q_{j}, y, M\right) \text { is }
$$

- en $\left(\mathrm{q}_{\mathrm{i}}\right) \operatorname{Oen}(\mathrm{x}) \operatorname{Oen}\left(\mathrm{q}_{\mathrm{j}}\right) \operatorname{Oen}(\mathrm{y}) \operatorname{Oen}(\mathrm{M})$
- two 0s separate transitions,
beginning and end marked with 000
q_{0} is start
q_{1} is accept
$\mathrm{q}_{\mathrm{n}-1}$ is reject

- We could build a TM to check to see if a string is a legal encoding of a deterministic TM
- what does that language look like?

The Halting Problem, Proof

- $A_{T M}=\{<M, w>\mid M$ is a TM and M accepts $w\}$
- undecidable, may never halt
- assume $A_{\text {TM }}$ is decidable and that H is a TM decider (always halts) for $\mathrm{A}_{\text {тм }}$
- on input <M,w>:
$H(<M, w>)\left\{\begin{array}{l}\text { accept if } M \text { accepts } w \\ \text { rejects if } M \text { does not accept } w\end{array}\right.$

The Halting Problem, Proof, cont.

- Construct a TM, D, with H as subroutine.
- D calls H to determine what M does when
input is its encoding. D does the opposite.
- $D=O n$ input $\langle M\rangle$, where M is a TM

1) Run H on $<\mathrm{M},<\mathrm{M} \gg$
2) If H accepts, reject. If H rejects, accept.
$D(<\mathrm{D}>)\{$ accept if D does not accept <D>
$D(<D>)\{$ reject if D accepts <D>
Contradiction! We can use diagonalization to explore this further
