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Will it ever stop?
• ATM = { <M, w> | M is a TM and M accepts w }

– undecidable
– remember, decidable means that the TM will 

eventually reach an accept or reject state; 
it will halt

– U is a Universal TM

– TM U recognizes ATM:
• 1. Simulate M on input w with U
• 2. If M accepts then U accepts; if M rejects then U 

rejects; if M never halts then U never halts
• If we could get U to halt, then we could get M to halt
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Counting

• Diagonalization
– how can we determine if two infinite sets 

are the same size? (Georg Cantor)
– cannot just count them up
– the two sets are the same size if the 

elements of one set can be paired with the 
elements from the other set (no counting!)

– define a function as a correspondence
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Correspondence
• A and B are sets, F is a function from A to 

B;  F: A →B

– F is one-to-one if it never maps two different 
elements to the same place, if F(a) ≠ F(c) 
whenever a ≠  c

– F is onto if it hits every element of B, for each 
b ∈ B this is an a ∈ A such that F(a) = b

– A and B are the same size if there is a one-to-
one, onto function F 

– F is a correspondence
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Application
• Let N be the set of natural numbers, let 

E be the set of even natural numbers.

• If we can find a correspondence 
function between these two infinite sets, 
the are the same size
– f(n) = ?

• Definition: a set is countable if it is finite 
or in correspondence with the set of 
natural numbers
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Diagonialization
• Is Q = { m/n | m,n ∈ N } countable?

– can we find a correspondence?

– We can make a list of all the elements in 
Q, and match them with the elements in N

1/11 1/23 1/35 1/4 1/5

2/12 2/2 2/3 2/4 2/5

3/14 3/2 3/3 3/4 3/5

4/1 4/2 4/3 4/4 4/5

5/1

We cannot just go down
the first row because…
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What could ever be uncountable?
• The set of Real Numbers, R
• Proof by contradiction

– assume R is countable
– there must exists a correspondence 

function f with the set N
– find some number x ∈ R that is not paired 

with a number p ∈ N
– we will construct this number x
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Real Numbers are uncountable
• Assume F exists
• Construct x such 
  x ≠f(p) for any p
• x is between 0 and 1
• ensure x ≠f(1), set the 10ths’ place to 4
• ensure x ≠f(2), set the 100ths’ place to 6

– forever…. 
– never select 0 or 9 since .1999… = .2000*

• we know x ≠f(p) for any p since x differs 
from f(p) in the pth decimal place

* on the exam prove this for 3 points extra credit

p f(p)

1 3.14159…

2 5.55555

3 0.1234…

p f(p)
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Why do we care?
• Some languages are not TM 

recognizable

– show that the set of all TMs is countable
• each TM recognizes exactly one language

– show that the set of all languages is not 
countable

– some language must not match to a TM
– for a finite alphabet, Σ, Σ* is countable

• a finite set of strings of each length
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Some languages are not TM recog.

• show that the set of all TMs is countable

– the set of all TM is countable because each 
TM, M, can be encoded into a string, <M>

– omit all strings that are not valid TMs

• show that the set of all languages is not
– set of all infinite binary sequences, B, is 

uncountable, using proof by contradiction 
similar to Real Numbers
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Encode TM as string
• Assume Σ = {0, 1}; Γ = {0, 1, }
• Encode elements of δ  using 1s

δ (qi, x) = (qj, y, M) is 

• en(qi)0en(x)0en(qj)0en(y)0en(M) 

– two 0s separate transitions, 
   beginning and end marked with 000
q0 is start

q1 is accept

qn-1 is reject

• We could build a TM to check to see if a string is 
a legal encoding of a deterministic TM
– what does that language look like?

Z en(Z)

0 1

1 11
 111

Z en(Z)
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• ATM = { <M, w> | M is a TM and M accepts w }
– undecidable, may never halt

– assume ATM is decidable and that H is a TM 
decider (always halts) for ATM

– on input <M,w>:

  accept if M accepts w

  rejects if M does not accept w

The Halting Problem, Proof

H(<M,w>)
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The Halting Problem, Proof, cont.
• Construct a TM, D, with H as subroutine.
• D calls H to determine what M does when

input is its encoding. D does the opposite.
– D = On input <M>, where M is a TM

1) Run H on <M, <M>>
2) If H accepts, reject. If H rejects, accept.

  accept if D does not accept <D>
  reject if D accepts <D>

Contradiction! We can use diagonalization 
to explore this further

D(<D>)
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