CS310

The Halting Problem Section 4.2

November 19, 2010

CS 310 – Fall 2010 Pacific University

Will it ever stop?

- $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and M accepts w } \}$
 - undecidable
 - remember, decidable means that the TM will eventually reach an accept or reject state;
 it will halt
 - U is a Universal TM
 - TM U recognizes A_{TM} :
 - 1. Simulate M on input w with U
 - 2. If M accepts then U accepts; if M rejects then U rejects; *if M never halts then U never halts*
 - If we could get U to halt, then we could get M to halt

Counting

- Diagonalization
 - how can we determine if two infinite sets are the same size? (Georg Cantor)
 - cannot just count them up
 - the two sets are the same size if the elements of one set can be paired with the elements from the other set (no counting!)
 - define a function as a *correspondence*

Correspondence

- A and B are sets, F is a function from A to
 B; F: A →B
 - F is *one-to-one* if it never maps two different elements to the same place, if F(a) ≠ F(c) whenever a ≠ c
 - F is onto if it hits every element of B, for each
 b ∈ B this is an a ∈ A such that F(a) = b
 - A and B are the same size if there is a one-toone, onto function F
 - F is a correspondence

Application

- Let N be the set of natural numbers, let E be the set of even natural numbers.
- If we can find a correspondence function between these two infinite sets, the are the same size

-f(n) = ?

 Definition: a set is *countable* if it is finite or in correspondence with the set of natural numbers

Diagonialization

• Is $Q = \{ m/n \mid m, n \in N \}$ countable?

– can we find a correspondence?

We can make a list of all the elements in Q, and match them with the elements in N

Pacific University

What could ever be uncountable?

- The set of Real Numbers, R
- Proof by contradiction
 - assume R is countable
 - there must exists a correspondence function f with the set N
 - find some number $x \in R$ that is not paired with a number $p \in N$
 - we will construct this number x

Real Numbers are uncountable

- Assume F exists
- Construct x such

 $x \neq f(p)$ for any p

• x is between 0 and 1

р	f(p)
1	3.14159
2	5.5 <mark>5</mark> 555
3	0.12 <mark>3</mark> 4
р	f(p)

- ensure $x \neq f(1)$, set the 10ths' place to 4
- ensure $x \neq f(2)$, set the 100ths' place to 6

– forever....

– never select 0 or 9 since .1999... = .2000*

- we know x ≠f(p) for any p since x differs from f(p) in the pth decimal place
- * on the exam prove this for 3 points extra credit

CS 310 – Fall 2010 Pacific University

Why do we care?

- Some languages are not TM recognizable
 - show that the set of all TMs is countable
 - each TM recognizes exactly one language
 - show that the set of all languages is not countable
 - some language must not match to a TM
 - for a finite alphabet, Σ , Σ^* is countable
 - a finite set of strings of each length

Some languages are not TM recog.

- show that the set of all TMs is countable
 - the set of all TM is countable because each TM, M, can be encoded into a string, <M>
 omit all strings that are not valid TMs
- show that the set of all languages is not
 - set of all infinite binary sequences, B, is uncountable, using proof by contradiction similar to Real Numbers

Encode TM as string

- Assume Σ = {0, 1}; Γ = {0, 1, ▽}
- Encode elements of δ using 1s
 - $\delta(q_i, x) = (q_j, y, M)$ is
 - en(q_i)0en(x)0en(q_j)0en(y)0en(M)
 - two 0s separate transitions,
 beginning and end marked with 000
 q₀ is start
 - q₁ is accept

 q_{n-1} is reject

- Z en(Z) 0 1 1 11 ▽ 111 Z en(Z)
- We could build a TM to check to see if a string is a legal encoding of a deterministic TM
 - what does that language look like?

The Halting Problem, Proof

• $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and M accepts } w \}$

- undecidable, may never halt

- assume A_{TM} is decidable and that H is a TM decider (always halts) for A_{TM}
- on input <M,w>:

H(<M,w>) - { accept if M accepts w rejects if M does not accept w

The Halting Problem, Proof, cont.

- Construct a TM, D, with H as subroutine.
- D calls H to determine what M does when

input is its encoding. D does the opposite.

- D = On input <M>, where M is a TM
 - 1) Run H on <M, <M>>
 - 2) If H accepts, reject. If H rejects, accept.
- D(<D>) { accept if D *does not accept* <D> reject if D accepts <D>

Contradiction! We can use diagonalization to explore this further

CS 310 – Fall 2010 Pacific University