CS310

Strings, String Operators, and Languages
 Sections:

September 1, 2010

Pacific University

Quick Review

- Sets (Union, Intersection, [Proper] Subset)
\{ n | rule about n\}
Cross Product/Power Set
- Sequences/Tuples
- Functions

$$
f: D \rightarrow R
$$

- Relation
$f: \mathrm{A}_{1} \times \mathrm{A}_{2} \times \ldots \times \mathrm{A}_{\mathrm{n}} \rightarrow\{$ TRUE, FALSE $\}$
Equivalence Relations: 3 conditions

Strings

- Alphabet: Any finite set, $\Sigma=\{a, b\}$
- String: Any finite sequence of symbols from a given alphabet
w = ababaabba, string over \sum
$\varepsilon=$ empty string, zero symbols
length of w : $|w|=$ number of symbols it contains
$|\varepsilon|=\quad|\mathrm{w}|=$
- Strings are building blocks of computer science
strings can represent: data sets (DNA), source code, files

String Operations

- Closure $\left(\Sigma^{*}\right)$: set of all strings over \sum, including ε.

$$
\Sigma=\{a, b\} \quad \Sigma^{*}=\{\varepsilon, a, b, a b, b a, a a, b b, \ldots\}
$$

- Concatenations

If $x, y \in \sum^{*}$, then $x y$ is defined to the be concatenation of strings x, y
$\mathrm{x}=\mathrm{aba} \mathrm{y}=\mathrm{bab} \quad \mathrm{xy}=$
x^{k} is k copies of x concatenated
$x^{2}=$

String Operations

- Prefix/Suffix
$z=x y$ for $x, y, z \in \sum^{*}, x$ is a prefix of z
y is a suffix of z
- Reverse
$x \in \sum^{*}, x^{R}$ is the reverse of x
$x=a b, x^{R}=b a$

Languages

- Language

Language L over \sum is a subset of \sum^{*}
$L=\left\{x \in\{a, b\}^{*}| | x \mid\right.$ is even $\}$
$=\{\varepsilon, \mathrm{aa}, \mathrm{ab}, \quad, \quad\}$

- Complement of a lamguage L over \sum
$\Sigma^{*}-\mathrm{L}=\mathrm{L}^{\prime}$
- Concatenation of languages
L_{1} and L_{2} over \sum
$L_{1} L_{2}=\left\{x y \mid x \in L_{1}, y \in L_{2}\right\}$
$\mathrm{L}^{2}=\mathrm{LL}$

Languages

- Union of languages
L_{1} and L_{2} over \sum

$$
\mathrm{L}_{1} \mathrm{UL}_{2}=\left\{x \mid x \in \mathrm{~L}_{1} \text { or } x \in \mathrm{~L}_{2}\right\}
$$

$\mathrm{L} 1=\{0\}^{*}$
$\mathrm{L} 2=\{1\}^{*}$
what is in $L_{1} \cup L_{2}$?
what is in $L_{1} L_{2}$?

Pacific University

Languages

- Kleene Star
$L^{*}=$ set of strings formed by concatenating any number of strings from L
$L=\left\{x \in\{a, b\}^{*}| | x \mid\right.$ is odd $\}$ What does L contain:
$L^{*}=\{\varepsilon, \quad, \quad, \quad\}$

Languages

- Recursive Definitions

Define L over $\Sigma=\{0,1\}$ as

1. $\varepsilon \in L$
2. If $x \in L$ then $0 x 1 \in L$

What is in L ? $L=\{\quad\}$

- Can we prove that $\{\varepsilon, 01,0011,000111, \ldots\}$ is equivalent to $\left\{01^{i} \mid i>=0\right\}$?
- Show L is subset of $\left\{0^{\circ} 1^{i} \mid i>=0\right\}$ and the reverse

Proof

- For $x, y \in \sum^{*}$, show $(x y)^{R}=y^{\text {¹ }} x^{R}$

Pacific University

