
CS 310 – Fall 2010
Pacific University

CS310

Parsing with Context Free Grammars
Today’s reference:

Compilers: Principles, Techniques, and Tools
by: Aho, Sethi, Ullman

aka: The Dragon Book
ISBN: 0-201-10088-6

Section 2.4 page 40

October 27, 2010

CS 310 – Fall 2010
Pacific University

Parsing
• Can a string, s, be generated by a grammar?

– does source code conform to the C grammar?

• For any CFG, we can parse in O(n3), n = |s|
– O(n) algorithms exist for languages that arise in

practice
– Single left to right scan with one look ahead

character

• Top-down vs. Bottom-up
– describes how you construct the parse tree

CS 310 – Fall 2010
Pacific University

Parsing

• Top-down
– efficient parsers that are more easily

constructed by hand
– We will be concerned with these for now

• Bottom-up
– handles a larger class of grammars
– often used in software tools that produce a

parser from a grammar

Example
A -> 0A1
A -> B
B -> #

 CS 310 – Fall 2010
Pacific University

Top Down Parsing
• For some grammars, this can be done with a

single left to right scan of the input

– looking at a single character/token at a time
– the lookahead character

TYPE -> SIMPLE

| id

| array [SIMPLE] of TYPE

SIMPLE -> integer

| char

| num dotdot num *

*from Aho, Sethi, Ullman

 CS 310 – Fall 2010
Pacific University

Let’s build the parse tree
array [num dotdot num] of integer

 CS 310 – Fall 2010
Pacific University

Recursive-descent Parsing

• Top down parsing
– execute a set of recursive procedures to parse
– one procedure per nonterminal

• Predictive parsing
– special case of Recursive-descent parsing
– the lookahead character unambiguously

determines how to choose the next step
• not all grammars will work

Example
procedure type
begin

if lookahead is in { integer, char, num } then
simple()

else if lookahead = id then
match(id);

else if lookahead = array then
match(array); match([); simple; match(]);
match(of); type;

else
error

endif
end type

TYPE -> SIMPLE

| id

| array [SIMPLE] of TYPE

 CS 310 – Fall 2010
Pacific University

Left Recursion
T -> T a x | x

what does this produce?

• Left Recursive Grammar

• What would procedure type look like?

• Problem?

• Rewrite as right recursive
T -> x R

R -> ax R | ε

 CS 310 – Fall 2010
Pacific University

First
• The lookahead character unambiguously

determines how to choose the next step

• We calculate FIRST(A)
• FIRST(A) is the set of characters that appear

as the first symbols of one or more strings
generated from A ♦

• For predictive parsing to work without
backtracking when A->X and A ->Y exist,
FIRST(X) and FIRST(Y) must be disjoint
– Why?

♦from Aho, Sethi, Ullman

 CS 310 – Fall 2010
Pacific University

First
• What is FIRST() for each of the

nonterminals?

TYPE -> SIMPLE

| id

| array [SIMPLE] of TYPE

SIMPLE -> integer

| char

| num dotdot num *

∗from Aho, Sethi, Ullman

 CS 310 – Fall 2010
Pacific University

Simple Parse Table
• Instead of a function, we can build

a table to tell us how to parse.

(1) S -> Q
(2) S -> (S)
(3) Q -> 1
(4) Q -> 0

34--Q

11-2S

10)(

Parse Error!

 CS 310 – Fall 2010
Pacific University

Build the Parse Table

(1) S -> AB
(2) S -> B
(3) A -> a | cA
(4) B -> b | dB

Parse the strings
ccadb
b
ddb

Does the grammar need transformed?

	CS310
	Parsing
	Slide 3
	Slide 4
	Let’s build the parse tree
	Recursive-descent Parsing
	Example
	Left Recursion
	Slide 9
	Slide 10
	Slide 11
	Slide 12

