CS310

Chomsky Normal Form Section: 2.1 page 106 PDA \rightarrow CFG

 Section 2.2 page 115October 18, 2010

Pacific University

Quick Review

```
a,b->c
```

Read a from input, read b from stack, push c onto stack to take this transition
$\mathrm{a}=\varepsilon$, read no input $\mathrm{b}=\varepsilon$, don't pop data from stack $\mathrm{c}=\varepsilon$, don't push data onto stack

Example

- $L=\left\{a^{i} b^{j} c^{k} \mid i, j, k \geq 0, i=j\right.$ or $\left.i=k\right\}$

Pacific University

Theorem

- A Language is context free if and only if there exists a PDA that recognizes it.
- Lemma:
- If a language is context free, then some PDA recognizes it
- Show: a CFG can be transformed into a PDA
- Lemma:
- If a PDA recognizes a language, then it is context free
- Program a PDA to run a CFG

Construct PDA from CFG p 116

- $\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{bb}^{\mathrm{n}} \mid \mathrm{n} \geq 0\right\}$

CFG?

1) Place $\$$, start variable on stack
2) Repeat:
a) if variable A is on top of stack, use replacement rule A (pop) ->w (push)
b) if terminal on top, read input, compare. If match, repeat, else die
c) if \$ on top, enter accept, die if there's more input

Construct CFG from PDA

- Read p 119 - 122 for next time, we'll discuss the proof

Pacific University

Chomsky Normal Form

- CNF presents a grammar in a standard, simplified form:

A-> BC
$\mathrm{A} \rightarrow a$
S $->\varepsilon$

- Where A,B,C are variables and B and C are not the start variable
$-a$ is a terminal
- The rule $\mathrm{S}->\varepsilon$ is allowed so the language can generate the empty string (optional)

CNF Benefits

- Easier to prove statements about CFG's when in CNF
- Any CFG can be converted to CNF
- Remove productions:

A $->\varepsilon$
to empty
A \rightarrow B
Unit rule
A $->\mathrm{s}, \mathrm{s}$ contains a terminal and $|\mathrm{s}|>1$
A $\rightarrow \mathrm{s},|\mathrm{s}|>2$
$\mathrm{s} \in\left\{\mathrm{VU} \sum\right\}^{*}$

Removing A -> $\boldsymbol{\varepsilon}$

$$
\begin{aligned}
& \text { S -> UAV } \\
& \text { A }->\varepsilon
\end{aligned}
$$

- A variable A is nullable if A-*> $\boldsymbol{\varepsilon}$ Find all nullable variables Remove all $\boldsymbol{\varepsilon}$ transitions If T $->\mathrm{s}_{1} \mathrm{As}_{2}$ and A nullable then add $\mathrm{T}->\mathrm{s}_{1} \mathrm{~S}_{2}$

Example

$\mathrm{S} \rightarrow \mathrm{TU}$
$\mathrm{T} \rightarrow \mathrm{AB}$
$\mathrm{A} \rightarrow \mathrm{aA} \mid \varepsilon$
$\mathrm{B} \rightarrow \mathrm{bB} \mid \varepsilon$
$\mathrm{U} \rightarrow \mathrm{ccA} \mid \mathrm{B}$

Nullable variables?
Productions removed?
Productions added?

Pacific University

Removing A -> B (Unit Productions)

$$
\begin{aligned}
& A->B \\
& B->~
\end{aligned}
$$

$\mathrm{S} \in\left\{\mathrm{VU} \sum\right\}^{*}$

- A variable B is A -derivable if $\mathrm{A}-*>\mathrm{B}$

Find all A-derivable variables for each A
Remove all unit transitions
If $\mathrm{B} \rightarrow \mathrm{s}$ and B is A-derivable
then add $\mathrm{A}->\mathrm{s}$

Example

$$
\begin{array}{ll}
\mathrm{S} \rightarrow \mathrm{TU}|\mathrm{~T}| \mathrm{U} & \mathrm{~B} \rightarrow \mathrm{bB} \mid \mathrm{b} \\
\mathrm{~T} \rightarrow \mathrm{AB}|\mathrm{~A}| \mathrm{B} & \mathrm{U} \rightarrow \mathrm{ccA}|\mathrm{~B}| \mathrm{cc} \\
\mathrm{~A} \rightarrow \mathrm{aA} \mid \mathrm{a} &
\end{array}
$$

S-derivable:
T-derivable:
U-derivable:
Productions removed:
Productions added:

Remove $\mathrm{A}->\mathrm{S}_{1} \mathrm{aS}_{2}$

$A \rightarrow S_{1} \mathrm{aS}_{2}$
$a \in \sum, S_{1}$ and S_{2} strings, at least one is not empty
Create

$$
\begin{aligned}
& X_{a}->a \\
& A->S_{1} X_{a} S_{2}
\end{aligned}
$$

Then fix up A-> $\mathrm{S}_{1} \mathrm{X}_{\mathrm{a}} \mathrm{S}_{2}$

- why? what rule is violated?
- how?

Remove A-> $S_{1} X_{a} S_{2}$

A $->S_{1} X_{\mathrm{a}} \mathrm{S}_{2}$

A ->

Pacific University
$\mathrm{S} \rightarrow \mathrm{ASA} \mid \mathrm{aB}$
Put in to CNF
$\mathrm{A} \rightarrow \mathrm{B} \mid \mathrm{S}$
$\mathrm{B} \rightarrow \mathrm{b} \mid \varepsilon$

Pacific University

