CS310

Pushdown Automata Sections: 2.2 page 109

October 13, 2010

Pacific University

Quick Review

- (CFG) 4-tuple (V, $\sum, \mathrm{R}, \mathrm{S}$)
-V finite set of variables
$-\sum$ finite set of terminals
- R set of rules of form:
- variable $->$ (string of variables and terminals)
$-\mathrm{S} \in \mathrm{V}$, start variable
$-L(G)=\left\{\mathrm{w} \epsilon \sum^{*} \mid S-*>\mathrm{w}\right\}$
- w is in \sum^{*} and can be derived from S

Pacific University

Chomsky Normal Form

- CNF presents a grammar in a standard, simplified form:

A-> BC
$\mathrm{A} \rightarrow a$
S $->\varepsilon$

- Where A,B,C are variables
- B and C are not the start variable
$-a$ is a terminal
- The rule $\mathrm{S}->\varepsilon$ is allowed so the language can generate the empty string (optional)

Pushdown Automata

- Machine to recognize Context Free Language
- Similar to an NFA, but contains a stack
- An FA with memory added (LIFO!)

FA

Pushdown Automata

Pushdown Automata

- PDA may be deterministic or nondeterministic
- Not equivalent! (unlike DFA \& NFA)
- Define certain (state, input) to push data onto the stack
- Combine input string with stack data for δ

Pushdown Automata (Informally)

$$
\begin{aligned}
& \mathrm{S}->\mathrm{X} \\
& \mathrm{X} \rightarrow(\mathrm{X})|\mathrm{XX}| \varepsilon
\end{aligned}
$$

What language? Regular?

How would you solve this problem using a stack (forget the Pushdown Automata)?

Formal Definition

- 6-tuple!
- Q: set of states
- Σ : input alphabet
$-\Gamma$: stack alphabet
$-\delta: \mathrm{Q} \times \Sigma_{\mathrm{\varepsilon}} \times \Gamma_{\varepsilon}->P\left(\mathrm{Q} \times \Gamma_{\varepsilon}\right)$
- input and top of stack to transition
- Do not read or write from stack: $\Gamma_{\varepsilon}=\varepsilon$
$-\mathrm{q}_{0} \in \mathrm{Q}$: start state
$-\mathrm{F} \subseteq \mathrm{Q}$: set of accept states

Example (Non-deterministic)

- $\left\{\left.\begin{array}{ll}0 & 1\end{array} \right\rvert\, \mathrm{n} \geq 0\right\}$
- q1 start state
- \$ special symbol

Input	0			1			ε		
Stack	0	$\$$	ε	0	$\$$	ε	0	$\$$	ε
q 1	\varnothing	$\{(\mathrm{q} 2, \$)\}$							
q 2	\varnothing	\varnothing	$\{(\mathrm{q} 2,0)\}$	$\{(\mathrm{q} 3, \varepsilon)\}$	\varnothing	\varnothing	\varnothing	\varnothing	\varnothing
q 3	\varnothing	\varnothing	\varnothing	$\{(\mathrm{q} 3, \varepsilon)\}$	\varnothing	\varnothing	\varnothing	$\{(\mathrm{q} 3, \varepsilon)\}$	\varnothing
q 4	\varnothing								

CS 310 - Fall 2010
Pacific University

Example

- Alternate notation:

Practice

- $\left\{w^{R} \mid w \in\{0,1\}^{*}\right\}$
hint: push symbols onto the stack, at each point guess that the middle of the string
has been reached and begin popping from stack

