CS310

Context Free Languages and Grammars Sections:2.1 page 99

October 6, 2010

CS 310 – Fall 2010 Pacific University

Context Free Grammar

- Another way to represent a language
 Can represent more languages than FA
- Produces a "Context Free Language"
- Pushdown Automata: machine that recognizes a context free language
- Trivia:
 - First used to describe human languages
 - Now used to parse computer languages (C, C++)

Context Free Grammar

• Example $A \rightarrow 0A1$

A → B B → #

Variables: A, B (may appear on LHS and RHS) Terminals: 0, 1, # (only appear on the RHS) Start variable: Variable on LHS of top rule Language: Example:

Example

• A **→**

→ 00#11

- derivation
- write u →* v if there is a derivation of the string v from u using the grammar, where u and v are strings of terminals and variables
- $-0A1 \rightarrow^* 00\#11$
- Parse Tree

Exercise

$R \rightarrow XRX \mid S$ $S \rightarrow aTb \mid bTa$

 $T \rightarrow XTX \mid X \mid \varepsilon$ $X \rightarrow a \mid b$

Variables, terminals of G? Start variable?

• True or false? $T \rightarrow^*$ aba

Formal Definition

- A context free grammar (CFG) G is a 4tuple (V, ∑, R, S)
 - V finite set of variables
 - $-\sum$ finite set of terminals
 - R set of rules of form:
 - variable (string of variables and terminals)
 - $S \in V$, start variable
 - The language of the grammar is:
 - $-L(G) = \{ w \in \sum^* | S \rightarrow^* w \}$
 - what?

Example

L = { w ∈ {a, b}* | aa is a substring } Find a grammar that generates this language

– Can we write this as a regular expression?

Constructing a CFG from a Language, L

- Requires some thought and creativity, just like building a Finite Automata
- Hints:
 - If possible, break L into pieces $L=L1 \cup L2$
 - Create grammar for L1 and L2, $S \rightarrow S_{L1} | S_{L2}$
 - If L is regular, use regular expression as guide
 - If L is regular, construct DFA then construct CFG:
 - Make variable R_i for each state q_i in DFA
 - Add rule $R_i \rightarrow \varepsilon$ for all $q_i \in F$, $R_i \rightarrow aR_z$ if $\delta(q_i, a) = q_z$
 - R_0 is start where q_0 is start of DFA

Example

- Grammar G₂ on page 101
- Show derivation for "a boy sees a flower"
 - Notice how this statement is non-creepy?

• Show the parse tree

Write the Grammar

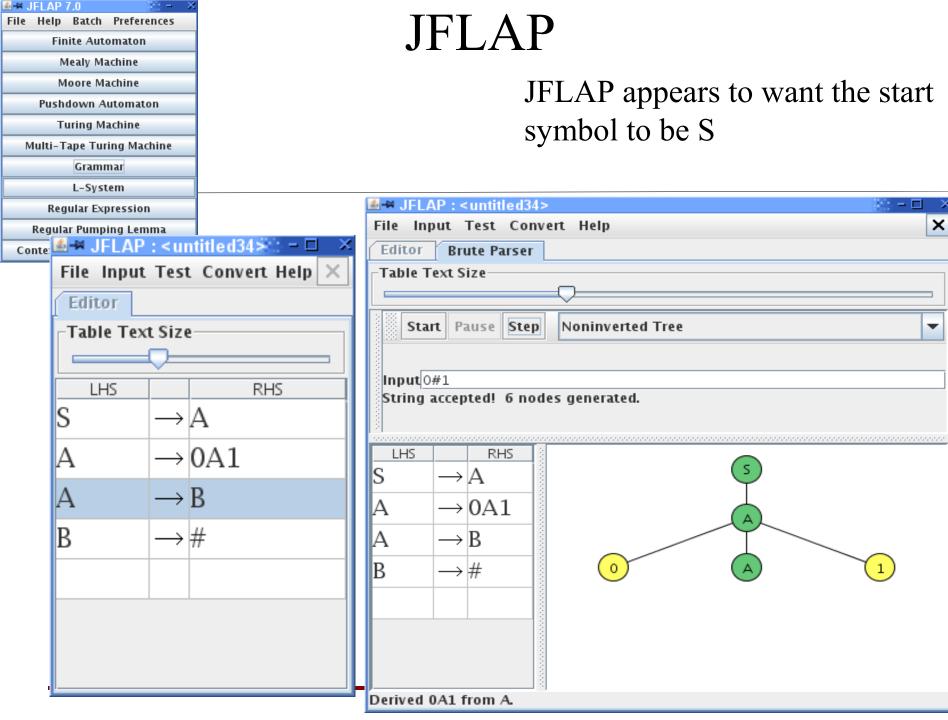
 $\Sigma = \{0, 1\}$

- {w | w is a binary number greater than 4}
- {w | w is $1^n 0^n, n \ge 0$ } ? $n \ge 1$
- {w | w is $1^n 0^n$, n >= 0, n is even}
- { w | w contains at least three 1s}
- $\{ w | w \text{ contains more 1s than 0s} \}$
- $\{w \mid |w| \text{ is prime}\}$
- $\{a^i b^j c^k \mid i=j \text{ or } i=k \} \Sigma = \{a,b,c\}$
- { w | w is a string of matched () } $\Sigma = \{(,)\}$

CS 310 – Fall 2010 Pacific University

Ambiguous Grammar

- $E \rightarrow E + E \mid E \mid x \mid E \mid a$
- Find parse tree for: a + a x a



More examples

$$\Sigma = \{0, 1\}$$

• $\{w \mid |w| \text{ is odd, middle character is } 0\}$

•
$$\{w \mid w = xyx, x \in \Sigma, y \in \Sigma^*\}$$

- { w | w = w^R}
- complement of $\{w | w = 0^n 1^n, n \ge 1\}$
- {w#x | w^R is a substring of x; w, $x \in \Sigma^*$ }
- {w | w = $0^{n+m}1^n$, $n \ge 1$, $m \ge 1$ }
- {w | w contains at least as many Os as 1s}
- {w | w = $0^{2n}1^n$, n ≥ 1 }
- {w | w contains twice as many Os as 1s}