CS 310 Sample Exam 1: DFA/NFA/Regular Expression/GNFA

Given:
$\mathrm{L}=\{\mathrm{a}, \mathrm{b}\}^{*}$
$\mathrm{G}=\{0,1\}^{*}$
Give one string in LG, give one string not in LG (neither of these strings should be the empty string if you can avoid it)

Give one string in $L \cap G$, give one string not in $L \cap G$ (neither of these strings should be the empty string if you can avoid it)

Give one string in $L \cup G$, give one string not in $L \cup G$ (neither of these strings should be the empty string if you can avoid it)

Give one string in (LG)*, give one string not in (LG)*, (neither of these strings should be the empty string if you can avoid it)

Use induction to prove the following. Be sure to clearly label your basis and induction step.

Recall the Fibonacci discussion from class. Prove that for every $n>=1, f_{4 n}$ is divisible by 3 .

Recall the Fibonacci discussion from class. Prove that for every $n>=2$, $\mathrm{f}_{\mathrm{n}-1} \mathrm{f}_{\mathrm{n}+1}=\left(\mathrm{f}_{\mathrm{n}}\right)^{2}+(-1)^{\mathrm{n}}$

The Alphabet for each language is $\{0,1\}$

1. Build a DFA and give one string in the language and one string not in the language (neither of these strings should be the empty string if you can avoid it)
$\{\mathrm{w} \mid \mathrm{w}$ contains substring 1010$\}$
$\{\mathrm{w} \mid \mathrm{w}$ has an even number of 0 s and $|\mathrm{w}|>4\}$
(101)*111(01)*111
2. Build an NFA and give one string in the language and one string not in the language (neither of these strings should be the empty string if you can avoid it)
$\{w \mid$ every even position of w is $0,|w|>=2\}$
(101)*1(010)*
$\{\mathrm{w}||\mathrm{w}|>0\}$

For the following three questions, provide the complete machine produced by the lemmas described in your book. Do no remove non-necessary states and transitions.

3. Concatenate NFAs

Use the lemma described in the book to concatenate the following two languages:
$\mathrm{A}=\{\mathrm{w} \mid$ contains substring 1010$\}$
$B=\{w \mid w$ ends with 00$\}$
Produce the machine for the language AB

4. Union NFAs

Use the lemma described in the book to union the following two languages:
$\mathrm{A}=\{\mathrm{w} \mid$ begins with 00 and ends with 11$\}$
$B=\{\mathrm{w} \mid \mathrm{w}$ contains the substring 11$\}$
Produce the machine for the language A U B
5. Kleene Star NFAs

Build a NFA that represents the Kleene star of this language. Show the NFA for the original language (A) and for the Kleene star (A*).

$$
\mathrm{A}=\left\{\mathrm{w} \mid 1^{*} 0^{*} 0101\right\}
$$

6. Convert a DFA to a Regular Expression using GNFAs

Transform the following DFA to a Regular Expression using the GNFA state removal method. Show the GNFA after each state removal.

Sipser Figure 1.6 page 36
7. Produce a Regular Expression
$\{\mathrm{w} \mid$ (starts with 1 and has 1010 as a substring or starts with 0 and has an odd length) and $|\mathrm{w}|>0\}$

8. Convert an NFA to a DFA

Convert this NFA to a DFA, remove all non-necessary states. Be sure to indicate which set of states in the NFA each state in the DFA represents.

Sipser figure 1.27 page 48

10. Discuss NFA/GNFA/DFA/RES

We have discussed NFAs, GNFAs, DFAs, and regular expressions. Explain, using a few English sentences, the relationships between these concepts.

11. Regular Expressions:

We use three operations to create regular expressions. What are they? Why do we use those three operations? Answer each of these questions using at least one English sentence.
12. Show that the following languages are or are not regular.
a. $\{\mathrm{w} \mid \mathrm{w}$ contains more 0 s than 1 s$\}$
b. $\{\mathrm{w} \mid$ the length of w is a power of 2$\}$
c. $\{\mathrm{w} \mid \mathrm{w}$ contains some 0 s and some 1 s$\}$
d. $\left\{\mathrm{ww}^{\mathrm{R}} \mid \mathrm{w}\right.$ contains only $\left.0 \mathrm{~s} .|\mathrm{w}|>0\right\}$
e. $\left\{w^{\mathrm{R}} \mid \mathrm{w}\right.$ is $\left.0(01)^{*} 0\right\}$
f. $\left\{\mathrm{w} \# \mathrm{w} \mid \mathrm{w} \in\{0,1\}^{*}\right\}$
g. $\left\{\mathrm{w} \# \mathrm{y} \mid \mathrm{w} \in\{0,1\}^{*}, \mathrm{y} \in\{0,1\}^{*}, \mathrm{x} \neq \mathrm{y}\right\}$

